Multi-Modal Approach to Understand BOLD fMRI Image-Contrast
理解 BOLD fMRI 图像对比度的多模态方法
基本信息
- 批准号:9730892
- 负责人:
- 金额:$ 27.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-15 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
06/30/98 This award supports the development of new methodology to enhance the NMR imaging and spectroscopy performance of the 7T horizontal bore spectrometer at Yale Magnetic Resonance Center for quantitative blood-oxygenation level dependent (BOLD) functional MRI (fMRI) image-contrast. The main significance of this project is that it will provide the fundamental basis for converting the BOLD images into neuronal activity maps. Autoradiography studies on animals and PET studies on humans have provided the standards for quantitative measurements of changes in cerebral activity by detecting alterations in cerebral perfusion and metabolism at high spatial resolution. However, the major disadvantages of these techniques are that both methodologies require radioactive tracers and temporal alterations in neuronal activity cannot be monitored. The BOLD fMRI method, in contrast, does not require exogenous tracers and provides a dynamic measure of brain activity. The proposed project will allow the BOLD signal to be quantitatively related to cerebral metabolism and perfusion, providing a quantitative MRI method of probing the physiological parameters that are coupled to cerebral activity. A non-invasive and non-radioactive method for quantitatively mapping alterations in neuronal activity in the mammalian brain would be a very important tool in neuroscience. Applications would include brain mapping of sensory and cognitive functions, assessment of altered cerebral activity in the diseased or injured brain, and long- term investigations of brain development and functional plasticity.
06/30/98 该奖项支持开发新方法,以增强耶鲁磁共振中心7T水平孔光谱仪的NMR成像和光谱性能,用于定量血氧水平依赖(BOLD)功能性MRI(fMRI)图像对比度。 该项目的主要意义在于它将为将BOLD图像转换为神经元活动图提供基础。 对动物的放射自显影研究和对人类的PET研究通过以高空间分辨率检测脑灌注和代谢的改变,提供了定量测量脑活动变化的标准。 然而,这些技术的主要缺点是,这两种方法都需要放射性示踪剂和神经元活动的时间变化不能监测。 相比之下,BOLD功能磁共振成像方法不需要外源性示踪剂,并提供了大脑活动的动态测量。 拟议的项目将允许BOLD信号与脑代谢和灌注定量相关,提供一种定量MRI方法来探测与脑活动相关的生理参数。 一种非侵入性和非放射性的方法来定量映射哺乳动物大脑中神经元活动的变化将是神经科学中一个非常重要的工具。 应用将包括感觉和认知功能的大脑绘图,患病或受伤大脑中改变的大脑活动的评估,以及大脑发育和功能可塑性的长期研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
D.S. Fahmeed Hyder其他文献
D.S. Fahmeed Hyder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('D.S. Fahmeed Hyder', 18)}}的其他基金
Development of Ultra-High Resolution in Vivo NMR Methods for Functional Molecular Physiology Studies in Mouse Brain
开发用于小鼠脑功能分子生理学研究的超高分辨率体内核磁共振方法
- 批准号:
0095173 - 财政年份:2001
- 资助金额:
$ 27.18万 - 项目类别:
Continuing Grant
相似海外基金
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
- 批准号:
10749588 - 财政年份:2023
- 资助金额:
$ 27.18万 - 项目类别:
Research on Prediction of Cardiac Disease Outcomes Using Multi-Modal Data Integration Approach Artificial Intelligence
利用多模态数据集成方法人工智能预测心脏病结果的研究
- 批准号:
23K15152 - 财政年份:2023
- 资助金额:
$ 27.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
- 批准号:
10704220 - 财政年份:2022
- 资助金额:
$ 27.18万 - 项目类别:
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
- 批准号:
10610610 - 财政年份:2022
- 资助金额:
$ 27.18万 - 项目类别:
Multi-modal neuroimaging approach for understanding human spatial visual information processing and its individual differences
理解人类空间视觉信息处理及其个体差异的多模态神经影像方法
- 批准号:
21H03789 - 财政年份:2021
- 资助金额:
$ 27.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CRII: IIS: HCC: Interplay of Emotions and Self-Efficacy of Novice Students during Programming Tasks: A Multi-Modal Approach
CRII:IIS:HCC:编程任务期间新手学生的情绪和自我效能的相互作用:多模式方法
- 批准号:
2104729 - 财政年份:2021
- 资助金额:
$ 27.18万 - 项目类别:
Standard Grant
CAREER: Developing New Scientific Instruments for Classroom Observation: A Multi-modal Machine Learning Approach
职业:开发用于课堂观察的新科学仪器:多模式机器学习方法
- 批准号:
2046505 - 财政年份:2021
- 资助金额:
$ 27.18万 - 项目类别:
Standard Grant
A Multi-Modal Imaging Approach To Study and Predict Early Inflammatory Arthritis
研究和预测早期炎症性关节炎的多模态成像方法
- 批准号:
440912 - 财政年份:2020
- 资助金额:
$ 27.18万 - 项目类别:
Fellowship Programs
Identifying Neural Signatures of Auditory-Predictive Processing in Schizophrenia: A Multi-Modal Imaging Approach
识别精神分裂症听觉预测处理的神经特征:多模态成像方法
- 批准号:
MR/T003138/1 - 财政年份:2020
- 资助金额:
$ 27.18万 - 项目类别:
Research Grant
A multi-modal approach to deep phenotyping frailty
深度表型衰弱的多模式方法
- 批准号:
2392325 - 财政年份:2019
- 资助金额:
$ 27.18万 - 项目类别:
Studentship