Combinatorics and Dynamics of Iterated Rational Maps
迭代有理图的组合学和动力学
基本信息
- 批准号:124336066
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research project is a combinatorial classification of all postcritically finite rational maps that are Newton maps of polynomials. This is a large class of all rational maps of given degree, and this will provide the first classification of a family of rational maps beyond polynomials or special one-parameter families. Along the way, we plan to answer a question of Steven Smale who asked for a classification of all those Newton maps that have additional attracting cycles (that is, attracting cycles that are not the roots of the given polynomials). This classification will be done in terms of graphs that we call "Newton graphs" and that naturally occur in the dynamical plane of the Newton maps. We also intend to investigate which postcritically finite Newton maps are "matings" of two polynomials: the latter is a known method to describe the dynamics of certain rational maps in terms of two polynomials of the same degree. It is known that all cubic Newton maps can be understood in this way (together with a related method called "capture"), but in higher degrees very little is currently known. Finally, we plan to extend our classification to all those rational Newton maps that arise as Newton maps of transcendental functions: these differ from polynomial Newton maps in the way that they have a parabolic, rather than repelling, fixed point at infinity.
这个研究计画的目标是对所有的后临界有限有理映射进行组合分类,这些有理映射是多项式的牛顿映射。这是给定次数的所有有理映射的一大类,并且这将提供除多项式或特殊单参数族之外的有理映射族的第一个分类。沿着,我们计划回答史蒂芬·斯梅尔的一个问题,他要求对所有具有额外吸引圈(即吸引圈不是给定多项式的根)的牛顿映射进行分类。这种分类将根据我们称之为“牛顿图”的图来完成,这些图自然地出现在牛顿映射的动力学平面中。我们还打算调查后临界有限牛顿映射是“交配”的两个多项式:后者是一个已知的方法来描述动力学的某些合理的地图在两个多项式的相同程度。众所周知,所有的三次牛顿映射都可以用这种方式来理解(连同一种称为“捕获”的相关方法),但在更高的程度上,目前所知甚少。最后,我们计划将我们的分类扩展到所有那些作为超越函数的牛顿映射出现的有理牛顿映射:这些映射与多项式牛顿映射的不同之处在于它们在无穷远处有一个抛物线而不是排斥的不动点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Dierk Schleicher其他文献
Professor Dr. Dierk Schleicher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Dierk Schleicher', 18)}}的其他基金
Dynamics of transcendental functions with escaping singular orbits and infinite-dimensional Teichmüller theory
具有逃逸奇异轨道的超越函数动力学和无限维 Teichmüller 理论
- 批准号:
274553393 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Antiholomorphic Dynamical Systems and Real Slices
反全纯动力系统和实切片
- 批准号:
237518971 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Symbolic Methods in Holomorphic Dynamics
全纯动力学中的符号方法
- 批准号:
220343398 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
The Newton Method as Efficient Root Finder of Polynomials
牛顿法作为多项式的高效求根方法
- 批准号:
169950233 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Extension of Thurston's Characterization Theorem to Transcendental Mappings
瑟斯顿表征定理对超越映射的推广
- 批准号:
87283091 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
- 批准号:
DP240100168 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
- 批准号:
MR/Y013476/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship