Dynamics of transcendental functions with escaping singular orbits and infinite-dimensional Teichmüller theory

具有逃逸奇异轨道的超越函数动力学和无限维 Teichmüller 理论

基本信息

项目摘要

One of the fundamental questions in the theory of dynamical questions is to determine which systems are equivalent, how different systems can be distinguished, and how the different dynamical possibilities can be classified. This general question shall be investigated in the context of iterated transcendental mappings. Goal of this research project is the investigation of the dynamics of certain iterated entire transcendental functions of finite type (that is, with finitely many critical and asymptotical values) with the property that all critical and asymptotic values converge to infinity under iteration. The orbits of critical and asymptotic values form a discrete set P that accumulates only at infinity. For appropriate families of entire functions of finite type the combinatorics and asymptotics of these points should allow us go give a classification of the respective entire functions.A possible extension concers those finite type transcendental functions for which all critical and asymptotic values either converge to infinity (as before) or are periodic or preperiodic (or possibly converge to attracting cycles). Important tool for this investigation will be the theory of (infinite-dimensional) Teichmüller spaces that are modeled after the complement of P in the Riemann sphere. To accomplish this, it will be necessary to extend Thurston's theorem (that is sometimes also called the "fundamental theorem of complex dynamics") from postcritically finite rational maps (which uses finite dimensional Teichmüller theory) to an infinite dimensional context, and also from rational to transcendental maps (that is, from the case of finite to infinite mapping degrees).
动力学问题理论中的一个基本问题是确定哪些系统是等价的,如何区分不同的系统,以及如何对不同的动力学可能性进行分类。这个一般性问题应该在迭代先验映射的背景下进行研究。本研究项目的目的是研究某些有限类型(即具有有限多个临界值和渐近值)的迭代整超越函数的动力学性质,即所有临界值和渐近值在迭代下都收敛到无穷大的性质。临界值和渐近值的轨道形成了一个仅在无穷大处累积的离散集合P。对于适当的有限型整函数族,这些点的组合学和渐近性应该允许我们给出相应的整函数的分类。一个可能的推广是指那些所有临界值和渐近值要么收敛到无穷大(如以前),要么是周期或准周期(或者可能收敛到吸引环)的有限类型超越函数。这项研究的重要工具将是仿照黎曼球面中P的补集的(无限维)Teichmüler空间的理论。为此,有必要将瑟斯顿定理(有时也称为“复杂动力学基本定理”)从后批判的有限有理映射(它使用有限维泰希米勒理论)扩展到无限维的背景下,并从有理映射扩展到先验映射(即从有限映射度的情况扩展到无限映射度的情况)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Dierk Schleicher其他文献

Professor Dr. Dierk Schleicher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Dierk Schleicher', 18)}}的其他基金

Antiholomorphic Dynamical Systems and Real Slices
反全纯动力系统和实切片
  • 批准号:
    237518971
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Symbolic Methods in Holomorphic Dynamics
全纯动力学中的符号方法
  • 批准号:
    220343398
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The Newton Method as Efficient Root Finder of Polynomials
牛顿法作为多项式的高效求根方法
  • 批准号:
    169950233
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Combinatorics and Dynamics of Iterated Rational Maps
迭代有理图的组合学和动力学
  • 批准号:
    124336066
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extension of Thurston's Characterization Theorem to Transcendental Mappings
瑟斯顿表征定理对超越映射的推广
  • 批准号:
    87283091
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Research on dynamics of transcendental entire functions and polynomial semigroups based on dynamics of polynomials
基于多项式动力学的超越整函数和多项式半群动力学研究
  • 批准号:
    17K14212
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamics of transcendental and rational functions
超越函数和理性函数的动力学
  • 批准号:
    16F16807
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Global connection problems on the Painleve transcendental functions
Painleve超越函数的全局连接问题
  • 批准号:
    16K05176
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on Fatou components of transcendental entire functions and singular values
超越整函数法图分量与奇异值的研究
  • 批准号:
    23540213
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural analysis of transcendental numbers through the values of Mahler functions
通过马勒函数值对超越数进行结构分析
  • 批准号:
    22740023
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Bidirectional research between complex dynamics of polynomials and transcendental entire functions
多项式复动力学与超越整函数的双向研究
  • 批准号:
    21540174
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on complex dynamics of transcendental entire functions
超越整体函数的复杂动力学研究
  • 批准号:
    19540190
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on complex dynamics of transcendental entire functions
超越整体函数的复杂动力学研究
  • 批准号:
    17540163
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
U.S.-Polish Collaborative Research: Ergodic Theory and Geometry of Transcendental Entire and Meromorphic Functions
美波合作研究:遍历理论和超越整体和亚纯函数的几何
  • 批准号:
    0306004
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Transcendental Numbers and Special Analytic Functions
超越数和特殊解析函数
  • 批准号:
    0340812
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了