Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
基本信息
- 批准号:9801591
- 负责人:
- 金额:$ 9.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bogomolov 9801591 The principal investigator intends to continue his work on the geometry of algebraic varieties, the structure of Galois groups, and related problems in birational geometry. He plans to work on constructing minimal dominant classes of algebraic varieties, asymptotic formulas for cohomology of line bundles, the description of fundamental groups and universal coverings of algebraic and symplectic manifolds, and the structure of complex symplectic and hyperkahler manifolds. He also proposes to work on the structure of Sylow subgroups of the Galois groups and on the effective version of the stabilization procedure for group cohomology. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
Bogomolov 9801591 首席研究员打算继续他在代数簇几何、伽罗瓦群结构以及双有理几何相关问题方面的工作。他计划致力于构造代数簇的最小主导类、线束上同调的渐近公式、基本群的描述和代数和辛流形的通用覆盖,以及复辛和超卡勒流形的结构。他还建议研究伽罗瓦群的 Sylow 子群的结构以及群上同调稳定过程的有效版本。 这是代数几何领域的研究。 代数几何是现代数学最古老的部分之一,但在过去的四分之一个世纪里得到了革命性的发展。在它的起源中,它处理可以通过最简单的方程(即多项式)在平面上定义的图形。如今,该领域不仅使用代数方法,还使用分析和拓扑方法,相反,它正在这些领域以及物理学、理论计算机科学和机器人技术中得到应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fedor Bogomolov其他文献
Василий Алексеевич Исковских (некролог)@@@Vasilii Alekseevich Iskovskikh (obituary)
瓦西里·阿列克谢耶维奇·伊斯科夫斯基赫(讣告)
- DOI:
10.4213/rm9304 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ф. Богомолов;Fedor Bogomolov;Виктор Степанович Куликов;Viktor Stepanovich Kulikov;Юрий Иванович Манин;Y. Manin;Вячеслав Валентинович Никулин;V. V. Nikulin;Дмитрий Олегович Орлов;D. Orlov;Алексей Николаевич Паршин;Aleksei Nikolaevich Parshin;Юрий Васильевич Прохоров;Y. Prokhorov;Александр Валентинович Пухликов;A. V. Pukhlikov;Майлс Рид;M. Reid;Игорь Ростиславович Шафаревич;Igor Rostislavovich Shafarevich;Вячеслав Владимирович Шокуров;Vyacheslav Vladimirovich Shokurov - 通讯作者:
Vyacheslav Vladimirovich Shokurov
Edge volume, part I
- DOI:
10.1007/s40879-018-0221-5 - 发表时间:
2018-02-16 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov - 通讯作者:
Ivan Cheltsov
Spitsbergen volume
- DOI:
10.1007/s40879-015-0088-7 - 发表时间:
2015-12-14 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov;Frédéric Mangolte;Constantin Shramov;Damiano Testa - 通讯作者:
Damiano Testa
Reconstruction of Function Fields
- DOI:
10.1007/s00039-008-0665-8 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Symmetric Tensors And Geometry of $${\mathbb{P}} ^N$$ Subvarieties
- DOI:
10.1007/s00039-008-0666-7 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Bruno De Oliveira - 通讯作者:
Bruno De Oliveira
Fedor Bogomolov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fedor Bogomolov', 18)}}的其他基金
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
1001662 - 财政年份:2010
- 资助金额:
$ 9.32万 - 项目类别:
Standard Grant
Algebraic varieties, birational geometry and the structure of the Galois groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0701578 - 财政年份:2007
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0404715 - 财政年份:2004
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0100837 - 财政年份:2001
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
数学科学:代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
9500774 - 财政年份:1995
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H03925 - 财政年份:2016
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H02141 - 财政年份:2016
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cohomological and Birational Invariants of Algebraic Varieties
代数簇的上同调和双有理不变量
- 批准号:
1601680 - 财政年份:2016
- 资助金额:
$ 9.32万 - 项目类别:
Standard Grant
Several aspects of birational automorphisms of algebraic varieties
代数簇双有理自同构的几个方面
- 批准号:
15H03611 - 财政年份:2015
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of algebraic varieties
代数簇的双有理几何
- 批准号:
1300750 - 财政年份:2013
- 资助金额:
$ 9.32万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
24684002 - 财政年份:2012
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
1001662 - 财政年份:2010
- 资助金额:
$ 9.32万 - 项目类别:
Standard Grant
Birational geometry of higher-dimensional algebraic varieties higher-dimensional algebraic
高维代数簇的双有理几何 高维代数
- 批准号:
20684001 - 财政年份:2008
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Studies on birational morphisms of 3-dimensional Algebraic varieties
3维代数簇的双有理态射研究
- 批准号:
19540017 - 财政年份:2007
- 资助金额:
$ 9.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)