Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
基本信息
- 批准号:0100837
- 负责人:
- 金额:$ 24.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the proposal is to study the geometry of algebraic varietiesand their invariants from different points of view. In particular theinvestigator and his colleagues studythe structure of fundamental groups and universal coverings of algebraicvarieties, the problemof placement of singularities, restrictions on the concentration of singularpoints in special fibers of the fibrations of algebraic varieties. In thelatter case the goal is to develop a sufficiently simple method which can begeneralized to the case of arithmetic family of curves. The study of theGalois groups of functional fields is going to provide with an alternativeapproach to the problems of birational geometry.The investigator suggests to continue a broad scope of research in the areaof algebraic geometry with potential applications to number theory andtheoretical physics. Of special interest is the study of a formulathat provides nontrivial estimates for a number of solutions in equationssimilar in form to the famous Fermat equation..
该建议的目的是从不同的角度研究代数变量及其不变量的几何。特别是,这位研究者和他的同事们研究了代数簇的基本群和泛覆盖的结构,奇点的放置问题,对代数簇的原纤维中奇点集中的限制。在后一种情况下,目标是发展一种足够简单的方法,该方法可以推广到算术曲线族的情况。对函数域伽罗华群的研究将为二次几何问题提供另一种方法。研究者建议继续在代数几何领域进行广泛的研究,并将其潜在地应用于数论和理论物理。特别令人感兴趣的是对一个公式的研究,该公式为方程中的许多解提供了非平凡的估计,其形式类似于著名的费马方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fedor Bogomolov其他文献
Василий Алексеевич Исковских (некролог)@@@Vasilii Alekseevich Iskovskikh (obituary)
瓦西里·阿列克谢耶维奇·伊斯科夫斯基赫(讣告)
- DOI:
10.4213/rm9304 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ф. Богомолов;Fedor Bogomolov;Виктор Степанович Куликов;Viktor Stepanovich Kulikov;Юрий Иванович Манин;Y. Manin;Вячеслав Валентинович Никулин;V. V. Nikulin;Дмитрий Олегович Орлов;D. Orlov;Алексей Николаевич Паршин;Aleksei Nikolaevich Parshin;Юрий Васильевич Прохоров;Y. Prokhorov;Александр Валентинович Пухликов;A. V. Pukhlikov;Майлс Рид;M. Reid;Игорь Ростиславович Шафаревич;Igor Rostislavovich Shafarevich;Вячеслав Владимирович Шокуров;Vyacheslav Vladimirovich Shokurov - 通讯作者:
Vyacheslav Vladimirovich Shokurov
Spitsbergen volume
- DOI:
10.1007/s40879-015-0088-7 - 发表时间:
2015-12-14 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov;Frédéric Mangolte;Constantin Shramov;Damiano Testa - 通讯作者:
Damiano Testa
Edge volume, part I
- DOI:
10.1007/s40879-018-0221-5 - 发表时间:
2018-02-16 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov - 通讯作者:
Ivan Cheltsov
Reconstruction of Function Fields
- DOI:
10.1007/s00039-008-0665-8 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Symmetric Tensors And Geometry of $${\mathbb{P}} ^N$$ Subvarieties
- DOI:
10.1007/s00039-008-0666-7 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Bruno De Oliveira - 通讯作者:
Bruno De Oliveira
Fedor Bogomolov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fedor Bogomolov', 18)}}的其他基金
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
1001662 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Algebraic varieties, birational geometry and the structure of the Galois groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0701578 - 财政年份:2007
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0404715 - 财政年份:2004
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
9801591 - 财政年份:1998
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
数学科学:代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
9500774 - 财政年份:1995
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H03925 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H02141 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cohomological and Birational Invariants of Algebraic Varieties
代数簇的上同调和双有理不变量
- 批准号:
1601680 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Several aspects of birational automorphisms of algebraic varieties
代数簇双有理自同构的几个方面
- 批准号:
15H03611 - 财政年份:2015
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of algebraic varieties
代数簇的双有理几何
- 批准号:
1300750 - 财政年份:2013
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
24684002 - 财政年份:2012
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
1001662 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Birational geometry of higher-dimensional algebraic varieties higher-dimensional algebraic
高维代数簇的双有理几何 高维代数
- 批准号:
20684001 - 财政年份:2008
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Studies on birational morphisms of 3-dimensional Algebraic varieties
3维代数簇的双有理态射研究
- 批准号:
19540017 - 财政年份:2007
- 资助金额:
$ 24.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)