Algebraic varieties, birational geometry and the structure of the Galois groups

代数簇、双有理几何和伽罗瓦群的结构

基本信息

  • 批准号:
    0701578
  • 负责人:
  • 金额:
    $ 20.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator plans to work on several problems in algebraic geometry, algebra and number theory. One of the objectives is to understand a relation between geometry of tangencies of smooth subvarieties of a complex projective space of small codimension with a structure of holomorphic tensors on such subvarieties. This will provide a description of such subvarieties satisfying special tangent conditions. In another project the plan is to show that previously constructed examples of projective surfaces indeed provide counter examples to the uniformization conjecture which claims holomorphic convexity of the universal coverings of complex projective manifolds. The completion of this project will change the current perception of the structure of non-simply-connected projective varieties. The main objective of another project is a dominance conjecture for special classes of hyperbolic curves defined over algebraic numbers. The dominance conjecture claims that any such curve has a finite nonramified covering which surjects onto arbitrary other curve. The covering depends on the target curve. This result would provide a simple geometric reason for the structure of algebraic points on all arithmetic hyperbolic curves to be similar. Hence many statements about the arithmetic of hyperbolic curves would be sufficient to check for one such curve only. It opens a new avenue for the advance in arithmetics of algebraic varieties. The focus of another project is a study of the structure of a hyperbolic curve defined over a finite field considered as a subset of its points under a standard imbedding into the jacobian of the curve. In this context the jacobian is viewed simply as an infinite torsion group. The subsets defined in this way have many remarkable properties and the plan is to investigate those systematically. In particular one of the objectives is to check whether the above subset defines completely the field of algebraic functions on the curve. The study of the geometry of complex algebraic varieties has many connections to other areas of mathematics and several areas of modern physics. Smooth submanifolds of small codimension in a projective space have very special geometry and their study is motivated by a conjecture which predicts a simple and complete description of such manifolds. Algebraic curves over small fields appear now in a multitude of applications. As it happens these curves have many additional geometric properties compare to complex algebraic curves and the objective is to uncover and describe them.
首席研究员计划研究代数几何、代数和数论中的几个问题。其中一个目标是了解一个小余维的复射影空间的光滑子簇的切线几何与这种子簇上的全纯张量结构之间的关系。这将提供满足特殊切条件的子簇的描述。在另一个项目的计划是要表明,以前构建的例子投影表面确实提供了反例的一致化猜想,声称全纯凸的普遍覆盖的复杂的投影流形。该项目的完成将改变目前对非单连通射影簇结构的看法。另一个项目的主要目标是一个优势猜想的特殊类别的双曲曲线定义的代数数。支配猜想认为,任何这样的曲线都有一个有限的非分歧覆盖,覆盖到任意其他曲线上。覆盖取决于目标曲线。这一结果将提供一个简单的几何原因代数点的结构上的所有算术双曲曲线是相似的。因此,关于双曲曲线的算术的许多陈述将足以仅检查一条这样的曲线。它为代数簇算术的发展开辟了一条新的途径。另一个项目的重点是研究定义在有限域上的双曲曲线的结构,该有限域被认为是在标准嵌入到曲线的雅可比矩阵中的点的子集。在这种情况下,雅可比矩阵被简单地看作是一个无限挠群。以这种方式定义的子集有许多显着的属性,计划是系统地研究这些属性。特别是其中一个目标是检查是否上述子集定义完全领域的代数函数的曲线。 复代数簇几何的研究与数学的其他领域和现代物理学的几个领域有许多联系。射影空间中的小余维光滑子流形具有非常特殊的几何性质,对它们的研究是由一个猜想激发的,这个猜想预言了对这种子流形的一个简单而完整的描述。小域上的代数曲线现在出现在许多应用中。与复代数曲线相比,这些曲线具有许多额外的几何性质,目标是揭示和描述它们。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fedor Bogomolov其他文献

Василий Алексеевич Исковских (некролог)@@@Vasilii Alekseevich Iskovskikh (obituary)
瓦西里·阿列克谢耶维奇·伊斯科夫斯基赫(讣告)
  • DOI:
    10.4213/rm9304
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ф. Богомолов;Fedor Bogomolov;Виктор Степанович Куликов;Viktor Stepanovich Kulikov;Юрий Иванович Манин;Y. Manin;Вячеслав Валентинович Никулин;V. V. Nikulin;Дмитрий Олегович Орлов;D. Orlov;Алексей Николаевич Паршин;Aleksei Nikolaevich Parshin;Юрий Васильевич Прохоров;Y. Prokhorov;Александр Валентинович Пухликов;A. V. Pukhlikov;Майлс Рид;M. Reid;Игорь Ростиславович Шафаревич;Igor Rostislavovich Shafarevich;Вячеслав Владимирович Шокуров;Vyacheslav Vladimirovich Shokurov
  • 通讯作者:
    Vyacheslav Vladimirovich Shokurov
Edge volume, part I
  • DOI:
    10.1007/s40879-018-0221-5
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Fedor Bogomolov;Ivan Cheltsov
  • 通讯作者:
    Ivan Cheltsov
Spitsbergen volume
  • DOI:
    10.1007/s40879-015-0088-7
  • 发表时间:
    2015-12-14
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Fedor Bogomolov;Ivan Cheltsov;Frédéric Mangolte;Constantin Shramov;Damiano Testa
  • 通讯作者:
    Damiano Testa
Reconstruction of Function Fields
  • DOI:
    10.1007/s00039-008-0665-8
  • 发表时间:
    2008-06-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Fedor Bogomolov;Yuri Tschinkel
  • 通讯作者:
    Yuri Tschinkel
Symmetric Tensors And Geometry of $${\mathbb{P}} ^N$$ Subvarieties
  • DOI:
    10.1007/s00039-008-0666-7
  • 发表时间:
    2008-06-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Fedor Bogomolov;Bruno De Oliveira
  • 通讯作者:
    Bruno De Oliveira

Fedor Bogomolov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fedor Bogomolov', 18)}}的其他基金

Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    1001662
  • 财政年份:
    2010
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    0404715
  • 财政年份:
    2004
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    0100837
  • 财政年份:
    2001
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    9801591
  • 财政年份:
    1998
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
数学科学:代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    9500774
  • 财政年份:
    1995
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
  • 批准号:
    16H03925
  • 财政年份:
    2016
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
  • 批准号:
    16H02141
  • 财政年份:
    2016
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cohomological and Birational Invariants of Algebraic Varieties
代数簇的上同调和双有理不变量
  • 批准号:
    1601680
  • 财政年份:
    2016
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Several aspects of birational automorphisms of algebraic varieties
代数簇双有理自同构的几个方面
  • 批准号:
    15H03611
  • 财政年份:
    2015
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Birational geometry of algebraic varieties
代数簇的双有理几何
  • 批准号:
    1300750
  • 财政年份:
    2013
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
  • 批准号:
    24684002
  • 财政年份:
    2012
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
  • 批准号:
    1001662
  • 财政年份:
    2010
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Birational geometry of higher-dimensional algebraic varieties higher-dimensional algebraic
高维代数簇的双有理几何 高维代数
  • 批准号:
    20684001
  • 财政年份:
    2008
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Studies on birational morphisms of 3-dimensional Algebraic varieties
3维代数簇的双有理态射研究
  • 批准号:
    19540017
  • 财政年份:
    2007
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了