Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
基本信息
- 批准号:1001662
- 负责人:
- 金额:$ 14.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project addresses the theory of universal spaces for birational invariants of algebraic varieties. One of the fundamental problems concerns the description of a natural class of quotients of products of projective spaces by the projective actions of abelian groups which held all finite birational invariants of varieties defined over algebraic closures of finite fields. The second more difficult problem which PI is going to address is to find a similar class of universal varieties for finite and then for infinite l-adic invariants of algebraic varieties defined over number fields.The Galois theory of functional fields provides with a series of results allowing to describe the cohomological birational invariants of algebraic varieties through the group cohomology. Thus this project addresses the problems at the interface of algebraic geometry, Galois theory and group theory.The PI is going to relate finite birational invariants of functional fields which are higher dimensional analogues of the nonramified Brauer group to the invariants of special systems of abelian subgroups in finite abelian groups.
该项目致力于代数簇的双有理不变量的泛空间理论。其中一个基本问题涉及到描述的自然类的concurent的产品的射影空间的投影行动的阿贝尔群举行所有有限双有理不变量的品种定义代数封闭的有限领域。第二个更困难的问题,其中PI是要解决的是找到一个类似的类的普遍品种有限,然后为无限的L-进不变量的代数簇定义的数字fields.The伽罗瓦理论的功能领域提供了一系列的结果,允许描述的上同调双有理不变量的代数簇通过组上同调。因此,这个项目解决的问题,在接口的代数几何,伽罗瓦理论和群论。PI将涉及有限双有理不变量的功能领域,这是高维类似的nonramified布劳尔群的不变量的特殊系统的阿贝尔子群在有限阿贝尔群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fedor Bogomolov其他文献
Василий Алексеевич Исковских (некролог)@@@Vasilii Alekseevich Iskovskikh (obituary)
瓦西里·阿列克谢耶维奇·伊斯科夫斯基赫(讣告)
- DOI:
10.4213/rm9304 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ф. Богомолов;Fedor Bogomolov;Виктор Степанович Куликов;Viktor Stepanovich Kulikov;Юрий Иванович Манин;Y. Manin;Вячеслав Валентинович Никулин;V. V. Nikulin;Дмитрий Олегович Орлов;D. Orlov;Алексей Николаевич Паршин;Aleksei Nikolaevich Parshin;Юрий Васильевич Прохоров;Y. Prokhorov;Александр Валентинович Пухликов;A. V. Pukhlikov;Майлс Рид;M. Reid;Игорь Ростиславович Шафаревич;Igor Rostislavovich Shafarevich;Вячеслав Владимирович Шокуров;Vyacheslav Vladimirovich Shokurov - 通讯作者:
Vyacheslav Vladimirovich Shokurov
Spitsbergen volume
- DOI:
10.1007/s40879-015-0088-7 - 发表时间:
2015-12-14 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov;Frédéric Mangolte;Constantin Shramov;Damiano Testa - 通讯作者:
Damiano Testa
Edge volume, part I
- DOI:
10.1007/s40879-018-0221-5 - 发表时间:
2018-02-16 - 期刊:
- 影响因子:0.500
- 作者:
Fedor Bogomolov;Ivan Cheltsov - 通讯作者:
Ivan Cheltsov
Reconstruction of Function Fields
- DOI:
10.1007/s00039-008-0665-8 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Symmetric Tensors And Geometry of $${\mathbb{P}} ^N$$ Subvarieties
- DOI:
10.1007/s00039-008-0666-7 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Bruno De Oliveira - 通讯作者:
Bruno De Oliveira
Fedor Bogomolov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fedor Bogomolov', 18)}}的其他基金
Algebraic varieties, birational geometry and the structure of the Galois groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0701578 - 财政年份:2007
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0404715 - 财政年份:2004
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0100837 - 财政年份:2001
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
9801591 - 财政年份:1998
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Varieties, Birational Geometry and the Structure of the Galois Groups
数学科学:代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
9500774 - 财政年份:1995
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H03925 - 财政年份:2016
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H02141 - 财政年份:2016
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cohomological and Birational Invariants of Algebraic Varieties
代数簇的上同调和双有理不变量
- 批准号:
1601680 - 财政年份:2016
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
Several aspects of birational automorphisms of algebraic varieties
代数簇双有理自同构的几个方面
- 批准号:
15H03611 - 财政年份:2015
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of algebraic varieties
代数簇的双有理几何
- 批准号:
1300750 - 财政年份:2013
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
24684002 - 财政年份:2012
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Birational geometry of higher-dimensional algebraic varieties higher-dimensional algebraic
高维代数簇的双有理几何 高维代数
- 批准号:
20684001 - 财政年份:2008
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Studies on birational morphisms of 3-dimensional Algebraic varieties
3维代数簇的双有理态射研究
- 批准号:
19540017 - 财政年份:2007
- 资助金额:
$ 14.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic varieties, birational geometry and the structure of the Galois groups
代数簇、双有理几何和伽罗瓦群的结构
- 批准号:
0701578 - 财政年份:2007
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant