Stochastic Processes

随机过程

基本信息

  • 批准号:
    9802753
  • 负责人:
  • 金额:
    $ 16.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9802753MarcusProfessors Marcus and Rosen will continue their study of continuity properties of functionals of symmetric Markov processes and their limiting behavior. Using an isomorphism theorem of Dynkin and extensions that they have obtained they will exploit the interplay between high order Wick power and Wick product Gaussian chaos processes and the renormalized self-intersection local time of a large class of Levy processes, to study the phenomenon of ``near-intersections'' of a Levy process and path properties of local times of Levy processes on lines and curves. The processes considered include Brownian motion and stable processes in dimensions one two and three, as well as processes in their domains of attraction. Marcus and Rosen plan to characterize the self-intersection local time functional as the process of zero quadratic variation in the decomposition of an associated Dirichlet process. Given that the self-intersection local time functional has zero quadratic variation it is natural to ask what is its precise p-variation. They plan to investigate this question as well. They expect to be able to use techniques developed in an earlier paper based on the theory of random Fourier series to expand the definition of the self-intersection local time functional by replacing measures by distributions. They will continue their study of continuity properties of high order Gaussian chaos processes and stable moving averages, and level crossings of absolutely continuous infinitely divisible processes. They will also study the multifractal spectrum of occupation measures and intersections of random walks on a four dimensional lattice.This research deals with fundamental properties of stochastic processes. It exposes a deep relationship between two classes of stochastic processes, Markov processes and Gaussian chaos processes that previously were considered to be unrelated. This relationship leads to increased understanding of the two component processes, an understanding that cannot be obtained by considering the processes separately. These results may have long range applications in the transmission, reception and analysis of data, in quantum physics and in the analysis of financial derivatives.
Marcus教授Marcus和Rosen将继续研究对称马尔可夫过程泛函的连续性及其极限行为。利用Dykin的同构定理和他们所得到的推广,他们将利用高阶Wick幂和Wick积高斯混沌过程与一大类Levy过程的重整化自交局部时之间的相互作用,研究直线和曲线上的Levy过程的“近交”现象和Levy过程的局部时的路径性质.所考虑的过程包括一维、二维和三维的布朗运动和稳定过程,以及它们的吸引域中的过程。Marcus和Rosen计划将自交局部时间泛函刻画为相关Dirichlet过程分解的零二次变差过程。假设自交局部时间泛函的二次变化为零,自然会问它的精确p-变化是多少。他们也计划调查这个问题。他们希望能够使用基于随机傅里叶级数理论的早期论文中开发的技术,通过用分布代替测量来扩展自相交局部时间泛函的定义。他们将继续研究高阶高斯混沌过程和平稳移动平均的连续性,以及绝对连续的无限可分过程的水平交叉。他们还将研究四维格子上随机游动的占用测度和交集的多重分形谱。这项研究涉及随机过程的基本性质。它揭示了马尔可夫过程和高斯混沌过程这两类以前被认为是不相关的随机过程之间的深层联系。这种关系增加了对这两个组成部分过程的理解,这种理解不能通过单独考虑这两个过程来获得。这些结果可能在数据的发送、接收和分析、量子物理和金融衍生品分析中有广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Marcus其他文献

Brain dysfunctions during facial discrimination in schizophrenia: Selective association to affect decoding
精神分裂症面部辨别期间的脑功能障碍:影响解码的选择性关联
  • DOI:
    10.1016/j.pscychresns.2010.09.005
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Quintana;Junghee Lee;Michael Marcus;K. Kee;T. Wong;Armen Yerevanian
  • 通讯作者:
    Armen Yerevanian
P128. Characterization of Reasons for Failure to Return for Follow-Up Across 3 Randomized Clinical Trials
  • DOI:
    10.1016/j.spinee.2009.08.388
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Marcus;Lacey Feldman;Janice Kim;Rachel Lotuaco;Hyun Bae;Rick Delamarter
  • 通讯作者:
    Rick Delamarter
Identification of the Apollo 12 lunar module ascent stage impact site on the moon
识别阿波罗 12 号登月舱上升阶段在月球上的撞击地点
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Stooke;Michael Marcus
  • 通讯作者:
    Michael Marcus
Lipid‐laden macrophage index in healthy canines
健康犬类的载脂巨噬细胞指数
  • DOI:
    10.1111/j.1365-2362.2006.01644.x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    O. Savchenko;Ajay K. Dhadwal;Murali Pagala;S. Bala;S. Narwal;R. Huang;M. Vaynblat;Michael Marcus;Mikhail Kazachkov
  • 通讯作者:
    Mikhail Kazachkov

Michael Marcus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Marcus', 18)}}的其他基金

Collaborative: Research in Stochastic processes
协作:随机过程研究
  • 批准号:
    1106451
  • 财政年份:
    2011
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Research in Stochastic Processes
合作研究:随机过程研究
  • 批准号:
    0706086
  • 财政年份:
    2007
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Research in Stochastic Processes
随机过程研究
  • 批准号:
    0404952
  • 财政年份:
    2004
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Research in Stochastic Processes
随机过程研究
  • 批准号:
    0103253
  • 财政年份:
    2001
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
US-India Planning Visit: Markov Local Times Research
美印计划访问:马尔可夫当地时间研究
  • 批准号:
    9603539
  • 财政年份:
    1997
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
  • 批准号:
    9503519
  • 财政年份:
    1995
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
  • 批准号:
    9207276
  • 财政年份:
    1992
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Japan Long Tern Visit: Spectrum Management Policy and DSP Applications
日本长期访问:频谱管理政策和DSP应用
  • 批准号:
    9121590
  • 财政年份:
    1991
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Contract Interagency Agreement
Mathematical Sciences: Probability in Banach Spaces
数学科学:巴纳赫空间中的概率
  • 批准号:
    8706285
  • 财政年份:
    1987
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Probability on Banach Spaces
数学科学:Banach 空间上的概率
  • 批准号:
    8301367
  • 财政年份:
    1983
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
  • 批准号:
    EP/W033585/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Research Grant
Conference: Seminar on Stochastic Processes 2023
会议:随机过程研讨会 2023
  • 批准号:
    2244835
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
  • 批准号:
    2246575
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
  • 批准号:
    2246817
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2345556
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Network Stochastic Processes and Time Series (NeST)
网络随机过程和时间序列 (NeST)
  • 批准号:
    EP/X002195/1
  • 财政年份:
    2022
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了