Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
基本信息
- 批准号:EP/W033585/1
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Random graphs are mathematical tools for studying the properties of the complex networks that are ubiquitous in our everyday life (social networks, the Internet, the World Wide Web, among others). In the case of social networks, two common features about their geometries stand out: heterogeneity and clustering. The former refers to the presence of a small number of highly connected nodes (i.e. the "influencers"), and the latter is often used to explain the phenomenon that friends of my friends are also my friends. Recent years have witnessed growing interests on random graph models that share real-world network features and particular attention has been paid to the impact of heterogeneity on the networks. Compared with heterogeneity, mathematically rigorous studies on clustering have been relatively few, and it is the aim of the proposed research programme to provide one such study. The main object under scrutiny, the so-called model of random intersection graphs, has a simple yet flexible mechanism to produce clustering. By conducting parallel studies on these graphs in different clustering regimes and by comparing the results from these studies, the programme can produce convincing evidence that clustering impacts various properties of the networks. More precisely, the research questions that will be studied pertain to the following aspects of the networks:1) Macroscopic structures as the graph size increases to infinity. 2) Large-time behaviours of certain dynamic processes (percolation and contact process) on the graphs. Like many other random graph models, the random intersection graph experiences a drastic change in the component sizes as its edge density increases. This phenomenon is often referred to as a phase transition. If we take a sequence of increasingly large random intersection graph, each frozen at the precise point of the phase transition, it is expected that we will see interesting behaviours emerge. The first part of the programme aims to give a detailed description on the macroscopic structures of these graphs, relying upon a "zooming-out" procedure that runs roughly as follows. As the graphs grow larger and larger, we shrink the edge lengths therein in a suitable way so that the changing pattern of the graphs stabilises and a "limit object" appears. By identifying the suitable scale of edge lengths and the limit object, we will be able to gain valuable information on the sequence of graphs itself. In the second part of the programme, we will look at how the particular structures of the random intersection graphs influence the two stochastic processes, percolation and contact process, running on them. The percolation process is connected to the aforementioned phase transition. By looking at this process, we will be able to discern the patten in which the components in the graphs merge with each other and form a giant component. Contact process is another classical probabilistic model and has been used to model the spread of computer virus on a network. For both processes, we expect to see distinct behaviours in the different clustering regimes of the graphs. It is the aim of the programme to confirm this expectation as well as to give a detailed description on the large-time behaviours of these processes in each regime.
随机图是研究我们日常生活中无处不在的复杂网络(社交网络、互联网、万维网等)的性质的数学工具。就社交网络而言,它们的几何结构有两个共同的特征:异质性和聚集性。前者指的是少数高度连接的节点(即“影响者”)的存在,后者通常用于解释我的朋友的朋友也是我的朋友的现象。近年来,人们对共享真实网络特征的随机图模型越来越感兴趣,并且特别关注异构性对网络的影响。与异质性相比,关于聚类的数学上严格的研究相对较少,拟议研究方案的目的是提供一项这样的研究。正在仔细研究的主要对象,即所谓的随机交叉图模型,具有简单而灵活的生成聚类的机制。通过在不同聚类机制下对这些图进行平行研究,并通过比较这些研究的结果,该方案可以产生令人信服的证据,证明聚类影响网络的各种属性。更确切地说,将研究的研究问题涉及网络的以下方面:1)当图的大小增加到无穷大时的宏观结构。2)某些动态过程(渗流过程和接触过程)在图上的大时间行为。像许多其他随机图模型一样,随机相交图随着其边密度的增加而经历组件大小的急剧变化。这种现象通常被称为相变。如果我们取一系列越来越大的随机相交图,每个图都冻结在相变的精确点上,那么我们将看到有趣的行为出现。该计划的第一部分旨在详细描述这些图表的宏观结构,依赖于大致如下运行的“缩小”程序。当图变得越来越大时,我们以适当的方式收缩其中的边长度,使得图的变化模式稳定并且出现“极限对象”。通过确定合适的边长尺度和极限对象,我们将能够获得关于图序列本身的有价值的信息。在程序的第二部分中,我们将研究随机交叉图的特殊结构如何影响在其上运行的两个随机过程,即渗流过程和接触过程。渗流过程与上述相变有关。通过观察这个过程,我们将能够辨别出图中的组件彼此合并并形成巨型组件的模式。接触过程是另一个经典的概率模型,并已被用来模拟计算机病毒在网络上的传播。对于这两个过程,我们期望在图的不同聚类机制中看到不同的行为。该计划的目的是确认这一预期,并详细描述这些过程在每个制度中的大时间行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minmin Wang其他文献
Plasma D-dimer levels are associated with disease progression in diabetic nephropathy: a two-center cohort study
血浆 D-二聚体水平与糖尿病肾病的疾病进展相关:一项双中心队列研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Yedong Yu;Caifeng Zhu;Yi Lin;Qian Qian;Xiao;Wen;Minmin Wang;Jianguang Gong;Maosheng Chen;Lin Liu;Rizhen Yu;Quanquan Shen;Lina Shao;Bin Zhu - 通讯作者:
Bin Zhu
Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system.
从毕赤酵母中生产重组漆酶以及漆酶/香草醛系统中毒死蜱的生物降解。
- DOI:
10.4014/jmb.1212.12057 - 发表时间:
2013 - 期刊:
- 影响因子:2.8
- 作者:
Huifang Xie;Qi Li;Minmin Wang;Linguo Zhao - 通讯作者:
Linguo Zhao
Transporter-mediated tissue targeting of therapeutic molecules in drug discovery.
药物发现中治疗分子的转运蛋白介导的组织靶向。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.7
- 作者:
Jingye Zhou;Jianfeng Xu;Zheng Huang;Minmin Wang - 通讯作者:
Minmin Wang
Contribution of cardiovascular disease to the burden of non-communicable diseases in Africa: an analysis of data from Global Burden of Disease database, 1990–2019
心血管疾病对非洲非传染性疾病负担的影响:对 1990-2019 年全球疾病负担数据库数据的分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Maimaitiming;A. Kakunze;Yikai Feng;Minmin Wang;Na Li;Junyi Shi;Kepei Huang;Yinzi Jin;Zhijie Zheng - 通讯作者:
Zhijie Zheng
HEIGHT AND DIAMETER OF BROWNIAN TREE
布朗树的高度和直径
- DOI:
10.1214/ecp.v20-4193 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Minmin Wang - 通讯作者:
Minmin Wang
Minmin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 32.4万 - 项目类别:
Research Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
- 批准号:
2246575 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Standard Grant
Quantitative research on stochastic processes in random media
随机介质中随机过程的定量研究
- 批准号:
21K03286 - 财政年份:2021
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic processes associated with resistance forms
与阻力形式相关的随机过程
- 批准号:
19K03540 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on stochastic processes in random media
随机介质中的随机过程研究
- 批准号:
19F19814 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
- 批准号:
1951577 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Theoretical study of random dynamical systems through the approach of stochastic processes
通过随机过程的方法对随机动力系统进行理论研究
- 批准号:
19K21834 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
- 批准号:
1855349 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Stochastic processes and geometry of random networks
随机过程和随机网络的几何
- 批准号:
RGPIN-2015-04570 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Discovery Grants Program - Individual