Research in Stochastic Processes
随机过程研究
基本信息
- 批准号:0404952
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0404952Marcus Professors Marcus and Rosen plan to complete their book, `Markov Processes, Gaussian Processes and Local Times', which includes the results of their research over the last sixteen years using isomorphism theorems to study local times of symmetric Markov processes by employing the well developed theory of Gaussian processes. They anticipate that the book will stimulate new research, which should lead to significant insights in stochastic processes and possibly physics. They also intend to continue their research concentrating on the First Ray-Knight Theorem, the one classical isomorphism theorem for the local times of Brownian motion that they have not been able to extend, and to consider a problem raised by Symanzik in quantum field theory, involving self-intersection local times. Professor Marcus plans to continue his research on the continuity and boundedness of stochastic convolutions with respect to infinitely divisible processes. Professor Rosen intends to study large deviations and exponential integrability for functionals of Markov processes related to intersections. He also intends to study fine properties of the geometry of the simple random walk in two dimensions. The research of Professors Marcus and Rosen is aimed at understanding the structure of stochastic processes. Stochastic processes are models for the evolution of random phenomena in time. However, even though the processes are random they contain some fundamental inner structure which when understood makes them in some sense predictable. Global warming is a good example. The temperature varies, day by day and season by season. There is a fundamental question: Is the average temperature getting warmer, or is the warming we seem to be witnessing simply a short term fluctuation of a basically stable weather pattern? The research supported by this grant does not attempt to answer this specific question. It is instead a study of the fundamental properties of random structures, which may give the tools to more effectively deal with important questions such as this one.
0404952马库斯教授马库斯和罗森计划完成他们的书,“马尔可夫过程,高斯过程和当地时间”,其中包括他们的研究结果在过去的十六年中使用同构定理研究当地时间的对称马尔可夫过程采用发达的高斯过程理论。他们预计,这本书将刺激新的研究,这将导致在随机过程和可能的物理学的重大见解。他们还打算继续他们的研究集中在第一射线骑士定理,一个经典的同构定理的局部时间的布朗运动,他们还没有能够扩大,并考虑一个问题提出的西曼齐克在量子场论,涉及自相交局部时间。马库斯教授计划继续他的研究连续性和有界性的随机卷积相对于无限可分过程。教授罗森打算研究大偏差和指数可积的马尔可夫过程的泛函有关的交叉点。他还打算研究精细性质的几何简单随机游走在两个层面。 Marcus和罗森教授的研究旨在理解随机过程的结构。随机过程是随机现象随时间演化的模型。然而,即使这些过程是随机的,它们也包含一些基本的内部结构,当理解这些结构时,它们在某种意义上是可预测的。全球变暖就是一个很好的例子。气温每天都在变化,季节也在变化。这里有一个基本的问题:是平均气温正在变暖,还是我们似乎正在目睹的变暖只是一个基本稳定的天气模式的短期波动?这项研究并不试图回答这个具体问题。相反,它是对随机结构的基本性质的研究,这可能会为更有效地处理诸如此类的重要问题提供工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Marcus其他文献
Brain dysfunctions during facial discrimination in schizophrenia: Selective association to affect decoding
精神分裂症面部辨别期间的脑功能障碍:影响解码的选择性关联
- DOI:
10.1016/j.pscychresns.2010.09.005 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. Quintana;Junghee Lee;Michael Marcus;K. Kee;T. Wong;Armen Yerevanian - 通讯作者:
Armen Yerevanian
P128. Characterization of Reasons for Failure to Return for Follow-Up Across 3 Randomized Clinical Trials
- DOI:
10.1016/j.spinee.2009.08.388 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Michael Marcus;Lacey Feldman;Janice Kim;Rachel Lotuaco;Hyun Bae;Rick Delamarter - 通讯作者:
Rick Delamarter
Identification of the Apollo 12 lunar module ascent stage impact site on the moon
识别阿波罗 12 号登月舱上升阶段在月球上的撞击地点
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
P. Stooke;Michael Marcus - 通讯作者:
Michael Marcus
Lipid‐laden macrophage index in healthy canines
健康犬类的载脂巨噬细胞指数
- DOI:
10.1111/j.1365-2362.2006.01644.x - 发表时间:
2006 - 期刊:
- 影响因子:5.5
- 作者:
O. Savchenko;Ajay K. Dhadwal;Murali Pagala;S. Bala;S. Narwal;R. Huang;M. Vaynblat;Michael Marcus;Mikhail Kazachkov - 通讯作者:
Mikhail Kazachkov
Michael Marcus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Marcus', 18)}}的其他基金
Collaborative: Research in Stochastic processes
协作:随机过程研究
- 批准号:
1106451 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Research in Stochastic Processes
合作研究:随机过程研究
- 批准号:
0706086 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
US-India Planning Visit: Markov Local Times Research
美印计划访问:马尔可夫当地时间研究
- 批准号:
9603539 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
- 批准号:
9503519 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
- 批准号:
9207276 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Japan Long Tern Visit: Spectrum Management Policy and DSP Applications
日本长期访问:频谱管理政策和DSP应用
- 批准号:
9121590 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Contract Interagency Agreement
Mathematical Sciences: Probability in Banach Spaces
数学科学:巴纳赫空间中的概率
- 批准号:
8706285 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Probability on Banach Spaces
数学科学:Banach 空间上的概率
- 批准号:
8301367 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative research on stochastic processes in random media
随机介质中随机过程的定量研究
- 批准号:
21K03286 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on stochastic processes in random media
随机介质中的随机过程研究
- 批准号:
19F19814 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
CRCNS Research Proposal: Stochastic Processes Driving the Ascending Reticular Activating System
CRCNS 研究提案:驱动上升网状激活系统的随机过程
- 批准号:
1822517 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Research on strongly correlated random fields related to stochastic processes
与随机过程相关的强相关随机场研究
- 批准号:
18K13429 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715210 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Tolerance-Enforced Simulation of Stochastic Processes
协作研究:随机过程的容差强制模拟
- 批准号:
1720433 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715875 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Markov processes via stochastic analysis
基于随机分析的马尔可夫过程研究
- 批准号:
15H03624 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Research in Stochastic Processes
合作研究:随机过程研究
- 批准号:
1105990 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative: Research in Stochastic processes
协作:随机过程研究
- 批准号:
1106451 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




