Investigations into Set Theory and Descriptive Dynamics

集合论和描述动力学的研究

基本信息

  • 批准号:
    9803126
  • 负责人:
  • 金额:
    $ 13.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-01 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

This project consists of two parts. The first involves continuing investigations into combinatorial set theory. This focuses on the use of strong ideals and generic embeddings to prove reflection properties and other combinatorial consequences. These are wide ranging, from stationary set reflection at singular cardinals to infinitary Ramsey theory. The tools include methods of forcing, the PCF theory and large cardinals. The second is the use of descriptive set theory to provide new invariants for studying objects of interest to ergodic theory. The main thrust is to be able to classify the complexity of various classes of transformations with the hope of being able to distinguish between previously indistinguishable classes (e.g one may be Borel and the other true analytic.) An example of an important problem that may yield to such a technique is to show that there is an ergodic, finite entropy, measure preserving transformation that is not isomorphic to a smooth measure preserving transformation on a compact manifold. This work is in the Foundations of Mathematics: how mathematics fits together and why it works. These studies often involve consideration of problems that are not solvable by the usual assumptions of mathematics: The Zermelo-Frankel Axioms with the Axiom of Choice. Methods to be used imclude generic large cardinals, or symmetries of the mathematical universe that reveal powerful regularities that often solve intractable problems. Considerations arising from studies of the foundations of mathematics have led to classifications of problems based on their inherent complexity. These measures of complexity, in turn, can be applied to natural problems in dynamical systems and ergodic theory, as will be pursued in this project.
本项目由两部分组成。 第一个是继续研究组合集合论。这侧重于使用强理想和一般嵌入来证明反射性质和其他组合结果。 这些都是广泛的,从固定集反射奇异基数无限拉姆齐理论。这些工具包括强迫方法,PCF理论和大型基数。 第二个是使用描述集理论提供新的不变量研究对象的兴趣遍历理论。 其主要目的是能够对各种变换类的复杂性进行分类,希望能够区分以前无法区分的类(例如,一个可能是Borel,另一个可能是真正的解析类)。一个例子的一个重要问题,可能会产生这样的技术是表明,有一个遍历,有限熵,措施保持变换,是不同构的一个光滑的措施保持变换在一个紧凑的流形。数学的基础:数学如何结合在一起,为什么它的作品。 这些研究通常涉及考虑那些不能用通常的数学假设解决的问题:Zermelo-Frankel公理与选择公理。 使用的方法包括通用的大基数,或数学宇宙的对称性,揭示了强大的随机性,往往解决棘手的问题。 从数学基础的研究中产生的考虑导致了基于其内在复杂性的问题分类。 这些措施的复杂性,反过来,可以应用到自然问题的动力系统和遍历理论,将在这个项目中追求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Foreman其他文献

Proceedings from a panel homosexuality: From declassification to decriminalization. Where do we go from here?
同性恋小组的诉讼程序:从解密到非刑事化。
  • DOI:
    10.1525/srsp.2004.1.3.71
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    G. Herdt;Judy Young;R. Kertzner;Matthew Foreman;R. Díaz;Caitlin Ryan;A. Belkin
  • 通讯作者:
    A. Belkin
A partition relation for successors of Large Cardinals
  • DOI:
    10.1007/s00208-002-0323-7
  • 发表时间:
    2003-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Matthew Foreman;Andras Hajnal
  • 通讯作者:
    Andras Hajnal
Racial modernity in Republican China, 1927-1937
民国时期的种族现代性,1927-1937
  • DOI:
    10.1080/14631369.2020.1792765
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Matthew Foreman
  • 通讯作者:
    Matthew Foreman
Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention
  • DOI:
    10.1016/j.apmr.2016.08.390
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kelly Taylor;Jack Engsberg;Matthew Foreman
  • 通讯作者:
    Matthew Foreman
Preliminary Efficacy of a Complex Intervention for Motor and Activity Limitations Post-Stroke
  • DOI:
    10.1016/j.apmr.2017.08.306
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anna Boone;Matthew Foreman;Jack Engsberg
  • 通讯作者:
    Jack Engsberg

Matthew Foreman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Foreman', 18)}}的其他基金

Eighth European Set Theory Conference
第八届欧洲集合论会议
  • 批准号:
    2214692
  • 财政年份:
    2022
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Standard Grant
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
  • 批准号:
    2100367
  • 财政年份:
    2021
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Seventh European Set Theory Conference
第七届欧洲集合论会议
  • 批准号:
    1916607
  • 财政年份:
    2019
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Standard Grant
Applications of Descriptive Set Theory in Dynamical Systems
描述集合论在动力系统中的应用
  • 批准号:
    1700143
  • 财政年份:
    2017
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
  • 批准号:
    1044150
  • 财政年份:
    2011
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
  • 批准号:
    0701030
  • 财政年份:
    2007
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Investigations into Set Theory and Ergodic Theory
集合论和遍历理论的研究
  • 批准号:
    0400887
  • 财政年份:
    2004
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Standard Grant
Some Problems in Set Theory and Ergodic Theory
集合论和遍历论中的一些问题
  • 批准号:
    0101155
  • 财政年份:
    2001
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Descriptive Set Theory, Ergodic Theory and Set Theory
数学科学:描述集合论、遍历理论和集合论中的问题
  • 批准号:
    9500494
  • 财政年份:
    1995
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Some Investigation into the ContinuumHypotheses and also Set-Theoretic Aspects of Group Actions
数学科学:对连续统假设以及群行为的集合论方面的一些研究
  • 批准号:
    9496286
  • 财政年份:
    1994
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant

相似海外基金

Insights into the complexities of a seismogenic subduction zone: Analysis of a high-quality aftershock data set from the 2017 Tehuantepec (M8.2) offshore Mexico earthquake
洞察孕震俯冲带的复杂性:2017 年墨西哥特万特佩克 (M8.2) 近海地震的高质量余震数据集分析
  • 批准号:
    2054442
  • 财政年份:
    2021
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
  • 批准号:
    2006747
  • 财政年份:
    2020
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Standard Grant
An Enquiry into the Statistical System in Local Governments in the Developing World, Using as a Point of Reference a Set of Census-Type Survey Data on Small Areas in Rural India
以印度农村小地区的一组人口普查型调查数据为参考,对发展中国家地方政府的统计系统进行调查
  • 批准号:
    15K03393
  • 财政年份:
    2015
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infiltration into partly frozen soils: standardized data set and model evaluation
渗透到部分冻土中:标准化数据集和模型评估
  • 批准号:
    461069-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Engage Grants Program
A mixed-method study to explore, assess, and explain the translation of a complex set of evidence-based rules into practice through electronic medical record based decision support: How can STOPP effectively be deployed in primary care?
一项混合方法研究,旨在通过基于电子病历的决策支持,探索、评估和解释一套复杂的循证规则转化为实践的过程:如何在初级保健中有效部署 STOPP?
  • 批准号:
    307664
  • 财政年份:
    2013
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Operating Grants
International Research Fellowship Program: Introduction of Field Theory into the Causal Set Context
国际研究奖学金计划:将场论引入因果集背景
  • 批准号:
    0853079
  • 财政年份:
    2009
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Fellowship Award
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming
集值图非线性标化方法及其在数学规划中的应用研究
  • 批准号:
    21540121
  • 财政年份:
    2009
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
  • 批准号:
    0701030
  • 财政年份:
    2007
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Continuing Grant
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming
集值图非线性标化方法及其在数学规划中的应用研究
  • 批准号:
    19540120
  • 财政年份:
    2007
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming Problems and Statistical Science.
集值图的非线性标化方法及其在数学规划问题和统计科学中的应用研究。
  • 批准号:
    17540108
  • 财政年份:
    2005
  • 资助金额:
    $ 13.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了