Some Problems in Set Theory and Ergodic Theory
集合论和遍历论中的一些问题
基本信息
- 批准号:0101155
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Foreman's work is in two directions: ergodic theory and combinatorial settheory. In ergodic theory he seeks to characterise the complexity ofvarious classes of ergodic measure preserving transformations, using thetools of descriptive set theory. In combinatorial set theory he iscontinuing a program of applying reflection principles and Shelah's PCFtheory to study classical problems in infinite combinatorics.Foreman investigates the phenomenon of apparent randomness in physicalsystems that are deterministic in nature. A system can be deterministic inthe sense that the behavior of any particular individual (particle) inthat system is completely determined (perhaps by some differentialequations), but on a macro level, any measurement made shows randombehavior. Many systems in nature have this kind of paradoxical properties.Foreman's other line of research considers difficult combinatorialproblems asked by people such as Erdos in the 1960's that remain majorquestions in the 21st century.
福尔曼的工作是在两个方向:遍历理论和组合集合论。在遍历理论中,他试图利用描述性集合论的工具来证明各类遍历测度保持变换的复杂性。在组合集理论,他继续应用反射原理和谢拉的PCF理论研究经典问题的无限combinatorics.Foreman调查现象的明显随机性在physicalsystems是确定性的性质。一个系统可以是确定性的,在这个意义上,系统中任何特定个体(粒子)的行为都是完全确定的(也许是由一些微分方程决定的),但在宏观层面上,任何测量都显示出随机行为。自然界中的许多系统都具有这种自相矛盾的性质。福尔曼的另一条研究路线考虑了像鄂尔多斯这样的人在20世纪60年代提出的困难的组合问题,这些问题在21世纪世纪仍然是主要问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Foreman其他文献
Proceedings from a panel homosexuality: From declassification to decriminalization. Where do we go from here?
同性恋小组的诉讼程序:从解密到非刑事化。
- DOI:
10.1525/srsp.2004.1.3.71 - 发表时间:
2004 - 期刊:
- 影响因子:2.6
- 作者:
G. Herdt;Judy Young;R. Kertzner;Matthew Foreman;R. Díaz;Caitlin Ryan;A. Belkin - 通讯作者:
A. Belkin
A partition relation for successors of Large Cardinals
- DOI:
10.1007/s00208-002-0323-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Matthew Foreman;Andras Hajnal - 通讯作者:
Andras Hajnal
Racial modernity in Republican China, 1927-1937
民国时期的种族现代性,1927-1937
- DOI:
10.1080/14631369.2020.1792765 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Matthew Foreman - 通讯作者:
Matthew Foreman
Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention
- DOI:
10.1016/j.apmr.2016.08.390 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Kelly Taylor;Jack Engsberg;Matthew Foreman - 通讯作者:
Matthew Foreman
Preliminary Efficacy of a Complex Intervention for Motor and Activity Limitations Post-Stroke
- DOI:
10.1016/j.apmr.2017.08.306 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Anna Boone;Matthew Foreman;Jack Engsberg - 通讯作者:
Jack Engsberg
Matthew Foreman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Foreman', 18)}}的其他基金
Eighth European Set Theory Conference
第八届欧洲集合论会议
- 批准号:
2214692 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Seventh European Set Theory Conference
第七届欧洲集合论会议
- 批准号:
1916607 - 财政年份:2019
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory in Dynamical Systems
描述集合论在动力系统中的应用
- 批准号:
1700143 - 财政年份:2017
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044150 - 财政年份:2011
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
- 批准号:
0701030 - 财政年份:2007
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Investigations into Set Theory and Ergodic Theory
集合论和遍历理论的研究
- 批准号:
0400887 - 财政年份:2004
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Investigations into Set Theory and Descriptive Dynamics
集合论和描述动力学的研究
- 批准号:
9803126 - 财政年份:1998
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Descriptive Set Theory, Ergodic Theory and Set Theory
数学科学:描述集合论、遍历理论和集合论中的问题
- 批准号:
9500494 - 财政年份:1995
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Investigation into the ContinuumHypotheses and also Set-Theoretic Aspects of Group Actions
数学科学:对连续统假设以及群行为的集合论方面的一些研究
- 批准号:
9496286 - 财政年份:1994
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
相似海外基金
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Basis Problems in Set Theory
集合论的基础问题
- 批准号:
RGPIN-2019-04311 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Advancing Approximation of Heterogeneous Multi-Objective Set Covering Problems with Modeling and Applications
LEAPS-MPS:通过建模和应用推进异构多目标集覆盖问题的逼近
- 批准号:
2137622 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
- 批准号:
2044954 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Basis Problems in Set Theory
集合论的基础问题
- 批准号:
RGPIN-2019-04311 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Maximum independent set and dominating set problems underlying multiple access communication codes
多址通信码的最大独立集和支配集问题
- 批准号:
20K03715 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basis Problems in Set Theory
集合论的基础问题
- 批准号:
RGPIN-2019-04311 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Grants Program - Individual
Extremal Problems Linking Graphs and Set Systems
连接图和集合系统的极值问题
- 批准号:
2266606 - 财政年份:2019
- 资助金额:
$ 16.5万 - 项目类别:
Studentship