Investigations into Set Theory and Ergodic Theory
集合论和遍历理论的研究
基本信息
- 批准号:0400887
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Foreman will investigate the descriptive set theoreticaspects of the classification problem for ergodic measure preservingsystems. He has partial results showing, for example, that they cannot beclassified by countable structures. He conjectures that the isomorphismproblem is provably complex, e.g. analytic but not Borel. The secondaspect of Foreman's proposal is to study ``canonical structure" in settheory. This is structure that requires the Axiom of Choice for itsexistence, but is independent of the choices made in it construction. Ofparticular interest are PCF objects and relations with squares anddiamonds.Foreman will investigate two areas of mathematics. The first has to dowith the evolution of complex systems in time. These systems appear toshow random behaviour, but of qualitatively different sorts. Foreman'sproject is to show that various behavior types are not distinguishable byconcrete observations. The second project has to do with the assumptionsthat the study of mathematics is based on. The usual assumptions are notstrong enough to be able to find the answers to all mathematicalquestions. For this reason it is necessary to investigate strengtheningsof the ordinary assumptions. Foreman proposes to do this by focussing on``canonical structure" in set theory.
福尔曼将调查的描述集theoreticaspects分类问题的遍历措施scheduling系统。例如,他的部分结果表明,它们不能被可数结构分类。他认为同构问题是可证明的复杂问题,例如解析问题而不是波莱尔问题。福尔曼建议的第二个方面是研究集合论中的“规范结构”。这是一种结构,它的存在需要选择公理,但它独立于在它的构造中所做的选择。特别感兴趣的是PCF对象和与正方形和菱形的关系。福尔曼将研究两个数学领域。第一个与复杂系统的时间演化有关。这些系统似乎表现出随机行为,但性质不同。福尔曼的项目是要表明,各种行为类型是无法通过具体的观察来区分的。第二个项目与数学研究所基于的假设有关。通常的假设不足以找到所有数学问题的答案。因此,有必要研究普通假设的强化。福尔曼建议通过关注集合论中的“规范结构”来做到这一点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Foreman其他文献
Proceedings from a panel homosexuality: From declassification to decriminalization. Where do we go from here?
同性恋小组的诉讼程序:从解密到非刑事化。
- DOI:
10.1525/srsp.2004.1.3.71 - 发表时间:
2004 - 期刊:
- 影响因子:2.6
- 作者:
G. Herdt;Judy Young;R. Kertzner;Matthew Foreman;R. Díaz;Caitlin Ryan;A. Belkin - 通讯作者:
A. Belkin
A partition relation for successors of Large Cardinals
- DOI:
10.1007/s00208-002-0323-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Matthew Foreman;Andras Hajnal - 通讯作者:
Andras Hajnal
Racial modernity in Republican China, 1927-1937
民国时期的种族现代性,1927-1937
- DOI:
10.1080/14631369.2020.1792765 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Matthew Foreman - 通讯作者:
Matthew Foreman
Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention
- DOI:
10.1016/j.apmr.2016.08.390 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Kelly Taylor;Jack Engsberg;Matthew Foreman - 通讯作者:
Matthew Foreman
Preliminary Efficacy of a Complex Intervention for Motor and Activity Limitations Post-Stroke
- DOI:
10.1016/j.apmr.2017.08.306 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Anna Boone;Matthew Foreman;Jack Engsberg - 通讯作者:
Jack Engsberg
Matthew Foreman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Foreman', 18)}}的其他基金
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Applications of Descriptive Set Theory in Dynamical Systems
描述集合论在动力系统中的应用
- 批准号:
1700143 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044150 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
- 批准号:
0701030 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Some Problems in Set Theory and Ergodic Theory
集合论和遍历论中的一些问题
- 批准号:
0101155 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Investigations into Set Theory and Descriptive Dynamics
集合论和描述动力学的研究
- 批准号:
9803126 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Descriptive Set Theory, Ergodic Theory and Set Theory
数学科学:描述集合论、遍历理论和集合论中的问题
- 批准号:
9500494 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Investigation into the ContinuumHypotheses and also Set-Theoretic Aspects of Group Actions
数学科学:对连续统假设以及群行为的集合论方面的一些研究
- 批准号:
9496286 - 财政年份:1994
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
Insights into the complexities of a seismogenic subduction zone: Analysis of a high-quality aftershock data set from the 2017 Tehuantepec (M8.2) offshore Mexico earthquake
洞察孕震俯冲带的复杂性:2017 年墨西哥特万特佩克 (M8.2) 近海地震的高质量余震数据集分析
- 批准号:
2054442 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
- 批准号:
2006747 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
An Enquiry into the Statistical System in Local Governments in the Developing World, Using as a Point of Reference a Set of Census-Type Survey Data on Small Areas in Rural India
以印度农村小地区的一组人口普查型调查数据为参考,对发展中国家地方政府的统计系统进行调查
- 批准号:
15K03393 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infiltration into partly frozen soils: standardized data set and model evaluation
渗透到部分冻土中:标准化数据集和模型评估
- 批准号:
461069-2013 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Engage Grants Program
A mixed-method study to explore, assess, and explain the translation of a complex set of evidence-based rules into practice through electronic medical record based decision support: How can STOPP effectively be deployed in primary care?
一项混合方法研究,旨在通过基于电子病历的决策支持,探索、评估和解释一套复杂的循证规则转化为实践的过程:如何在初级保健中有效部署 STOPP?
- 批准号:
307664 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
International Research Fellowship Program: Introduction of Field Theory into the Causal Set Context
国际研究奖学金计划:将场论引入因果集背景
- 批准号:
0853079 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming
集值图非线性标化方法及其在数学规划中的应用研究
- 批准号:
21540121 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
- 批准号:
0701030 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming
集值图非线性标化方法及其在数学规划中的应用研究
- 批准号:
19540120 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming Problems and Statistical Science.
集值图的非线性标化方法及其在数学规划问题和统计科学中的应用研究。
- 批准号:
17540108 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)