Multi-Scaling Theory and Methods for Random Fields

随机场的多尺度理论与方法

基本信息

  • 批准号:
    9803391
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2001-12-31
  • 项目状态:
    已结题

项目摘要

9803391WaymireThe main focus of this research is on mathematical theory and methods which have a direct bearing on problems involving multiscale phenomena in multiplicative structures that arise naturally in a wide variety of modern applications, such as river basin hydrology, fluid turbulence, financial securities markets, spin glasses etc. The essential mathematical ingredients are a space-time random field defined by a multiplicative cascade random process and a random network represented by a random tree graph, together with a system of equations directing the evolution. Much of the data collected and reported on these structures is in the form of log-log plots of some quantity versus a length scale. This leads to the introduction and refinements of new classes of self-similar spatial/temporal models whose scaling structure is inferred from empirically observed sample realizations. Thus we seek to calculate certain large-sample (fine scale) limits of statistical estimators of exponents and limit laws governing fluctuations. In addition, self-similarities and scaling exponents are sought for the cascade and network models. Then connections between the scaling exponents of the flow processes and those of the cascade and network exponents may be investigated. The prospect of a theory which computes structure functions, (i.e., multiscaling exponents) for extreme flows from corresponding structure function calculations on the inputs and network defines the frontiers of this research.A fundamental problem from environmental science is to determine the structure of river flows (e.g. extremes) from a basin given data on the local climate (e.g. rainfall) and topography (river network structure, soil moisture). In most parts of the world the information available for the planning of dams, flood insurance, military tactics etc. is in the form of remotely sensed local climate and topography. The mathematical formulation is based on a stochastic system of conservation equations (mass, momentum) which relate the flows to the multiplicative stochastic rainfall inputs and complex network topography via scaling and multiscaling exponents which are estimated from remotely sensed data. One of the practical aspects of results of this type is to assist hydrologists and engineers in extrapolating localized observations to larger scales, and to regionalize predicted flows. However, the broad mathematical framework contributes to our understanding of diverse natural stochastic phenomena such as fluid turbulence, stochastic investment yields, renewable natural resource distributions, spin glass magnets etc., which are intrinsically multiplicative in space and/or time.
9803391 Waymire这项研究的主要重点是数学理论和方法,这些理论和方法直接关系到涉及乘法结构中多尺度现象的问题,这些问题在各种各样的现代应用中自然出现,如流域水文学,流体湍流,金融证券市场,基本的数学成分是由乘法级联随机过程定义的时空随机场和由随机树图表示的随机网络,以及指导演化的方程组。 关于这些结构收集和报告的大部分数据是以某种数量与长度尺度的双对数图的形式。 这导致了新的自相似的空间/时间模型,其缩放结构推断从经验观察到的样本实现类的介绍和改进。 因此,我们试图计算某些大样本(精细尺度)的指数和限制法律波动的统计估计的限制。 此外,自相似性和标度指数的级联和网络模型寻求。 然后可以研究流动过程的标度指数与级联和网络标度指数之间的关系。 计算结构函数的理论的前景,(即,环境科学的一个基本问题是在给定当地气候(如降雨)和地形(河网结构、土壤湿度)的情况下确定流域的河流流量结构(如极值)。 在世界大多数地方,可用于水坝规划、洪水保险、军事战术等的信息是以遥感当地气候和地形的形式提供的。 的数学公式是基于一个随机系统的守恒方程(质量,动量)的流量乘法随机降雨输入和复杂的网络地形,通过缩放和多尺度指数,估计从遥感数据。 这种类型的结果的一个实际方面是帮助水文学家和工程师在推断本地化的观测到更大的规模,并预测流量区域化。 然而,广泛的数学框架有助于我们理解各种自然随机现象,如流体湍流,随机投资收益率,可再生自然资源分布,自旋玻璃磁体等,其在空间和/或时间上本质上是乘法的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Waymire其他文献

Applications of Statistics to Modeling the Earth's Climate System
统计在地球气候系统建模中的应用
  • DOI:
    10.5065/d6251g47
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edward Waymire;James McWilliams
  • 通讯作者:
    James McWilliams

Edward Waymire的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Waymire', 18)}}的其他基金

Collaborative Research: Branching Markov Chains and Stochastic Analysis Associated with Problems in Fluid Flow
合作研究:与流体流动问题相关的分支马尔可夫链和随机分析
  • 批准号:
    1408947
  • 财政年份:
    2014
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Residence and First Passage Time Functionals in Heterogeneous Ecological Dispersion
异质生态分散中的停留时间和首次通过时间泛函
  • 批准号:
    1122699
  • 财政年份:
    2011
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
US Executive Participation in Bernoulli Society for Mathematical Statistics and Probability
美国高管参与伯努利数理统计和概率学会
  • 批准号:
    1031251
  • 财政年份:
    2010
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Participant Support for 29th Conference on Stochastic Processes and their Applications
第 29 届随机过程及其应用会议的与会者支持
  • 批准号:
    0308986
  • 财政年份:
    2003
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations.
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构。
  • 批准号:
    0073958
  • 财政年份:
    2000
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Twenty-fifth Conference on Stochastic Processes and Their Applications
第二十五届随机过程及其应用会议
  • 批准号:
    9727877
  • 财政年份:
    1998
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Scaling Theories of 3-D Geometry and Flows of River Networks
合作研究:3-D 几何尺度理论和河网流量
  • 批准号:
    9421445
  • 财政年份:
    1995
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scaling Theories of Hydrology, Hydraulics and Geometry of River Networks
合作研究:水文学、水力学和河网几何的尺度理论
  • 批准号:
    9220053
  • 财政年份:
    1993
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Structure Function Asymptotics for Correlated Random Fields and Networks
数学科学:相关随机场和网络的结构函数渐近
  • 批准号:
    8801466
  • 财政年份:
    1988
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Fundamental Analysis of Space-Time Rainfall Field Structure
降雨时空场结构的基本分析
  • 批准号:
    8303864
  • 财政年份:
    1983
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
  • 批准号:
    2228680
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
  • 批准号:
    2228681
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Elite Interventions in Iron Age Levantine Urban Networks: Applying Settlement Scaling Theory to Monumentality
铁器时代黎凡特城市网络的精英干预:将聚落规模理论应用于纪念性
  • 批准号:
    22K20043
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Reduced-Scaling Coupled Cluster Theory in the Frequency and Time Domains
频域和时域的缩小尺度耦合簇理论
  • 批准号:
    2154753
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
asymptotic representation theory, harmonic analysis on branching graphs, and scaling limits for related probability models
渐近表示理论、分支图的调和分析以及相关概率模型的标度限制
  • 批准号:
    22K03346
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: MSA: Tree crown economics: testing and scaling a functional trait-based theory
合作研究:MSA:树冠经济学:测试和扩展基于功能性状的理论
  • 批准号:
    2106080
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: MSA: Tree crown economics: testing and scaling a functional trait-based theory
合作研究:MSA:树冠经济学:测试和扩展基于功能性状的理论
  • 批准号:
    2106058
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing integrated trait-based scaling theory to predict community change and forest function in light of global change
合作研究:开发基于特征的综合尺度理论,以根据全球变化预测群落变化和森林功能
  • 批准号:
    1931809
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Reduced-Scaling Quantum Mechanical Response Theory for the Spectroscopic Properties of Molecules in Solution
溶液中分子光谱特性的缩小尺度量子力学响应理论
  • 批准号:
    1900420
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Interplay between asymptotic representation theory and scaling limits in probability models
概率模型中渐近表示理论与标度极限之间的相互作用
  • 批准号:
    19K03532
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了