Tame Groups, Universal Graphs, Automorphism Towers, and Cofinalities of Infinite Groups
驯服群、通用图、自同构塔和无限群的共尾性
基本信息
- 批准号:9803417
- 负责人:
- 金额:$ 16.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cherlin proposes to collaborate with a team of eight researchers on the classification of connected simple tame groups of finite Morley rank, using methods suggested by experience with finite groups: it is anticipated that all such groups are algebraic. In addition Cherlin, working with Shi, seeks to introduce model theoretic methods into the study of universal graphs, and to show the role of the model theoretic algebraic closure operator for this class of problems. Thomas will study interactions of set theory and group theory in connection with automorphism towers and the cofinalities of infinite analogs of finite groups, making use of forcing, pcf theory, and large cardinals, as well as character theory. An outstanding problem is the relationship of the cofinality of the infinite symmetric group to Blass' invariant, the groupwise density. The role of matrix groups in modern mathematics is well established and occupies a central place in both pure and applied mathematics. It has been conjectured that these groups also play a predominant role in the detailed analysis of many apparently unrelated structures of general type. One of the goals of the present project is to confirm this in the so-called ``tame case'', which is more immediately accessible. A separate goal is to demonstrate that standard ideas of logic (model theory) can cast new light on existing problems in combinatorics (graph theory). It is hoped that graph theorists will themselves adopt these methods in such cases. The work of Thomas uncovers previously unsuspected relations between algebraic and set theoretical issues, and should lead to new ``forcing'' tools, which are among the most powerful foundational tools of modern set theory. The general thrust of the proposal is to show how techniques arising naturally in one area can be transported fruitfully to other subject areas.
Cherlin建议与一个由8名研究人员组成的团队合作,使用有限群经验所建议的方法,对有限Morley阶的连通简单驯服群进行分类:预计所有此类群都是代数的。此外,Cherlin与Shih合作,试图将模型论方法引入到万能图的研究中,并展示了模型论代数闭包算子在这类问题中的作用。托马斯将利用强迫、PCF理论、大基数以及特征标理论,结合自同构塔和有限群的无限类比的余定性,研究集合论和群论的相互作用。一个突出的问题是无限对称群的余定性与Blass不变量GroupWise密度的关系。矩阵群在现代数学中的作用是公认的,在纯数学和应用数学中都占有中心地位。据推测,在对许多明显无关的一般类型结构的详细分析中,这些基团也起着主导作用。本项目的目标之一是在所谓的“温顺情况”中确认这一点,这种情况更容易获得。另一个单独的目标是证明标准的逻辑思想(模型理论)可以为组合学(图论)中存在的问题提供新的认识。人们希望图论家自己也能在这种情况下采用这些方法。托马斯的工作揭示了代数和集合论问题之间以前未曾被怀疑的关系,并应该导致新的“强迫”工具,这些工具是现代集合论最强大的基础工具之一。该提案的主旨是展示在一个领域中自然产生的技术如何能够卓有成效地推广到其他主题领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Cherlin其他文献
On ℵ0-categorical nilrings
- DOI:
10.1007/bf02482887 - 发表时间:
1980-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Gregory Cherlin - 通讯作者:
Gregory Cherlin
Henson graphs and Urysohn—Henson graphs as Cayley graphs
- DOI:
10.1007/s10688-015-0103-2 - 发表时间:
2015-09-18 - 期刊:
- 影响因子:0.700
- 作者:
Gregory Cherlin - 通讯作者:
Gregory Cherlin
Homogeneous tournaments revisited
- DOI:
10.1007/bf00151671 - 发表时间:
1988-05-01 - 期刊:
- 影响因子:0.500
- 作者:
Gregory Cherlin - 通讯作者:
Gregory Cherlin
Universal graphs with a forbidden subtree
- DOI:
10.1016/j.jctb.2006.05.008 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:
- 作者:
Gregory Cherlin;Saharon Shelah - 通讯作者:
Saharon Shelah
Universal graphs with a forbidden subgraph: Block path solidity
- DOI:
10.1007/s00493-014-3181-5 - 发表时间:
2015-05-25 - 期刊:
- 影响因子:1.000
- 作者:
Gregory Cherlin;Saharon Shelah - 通讯作者:
Saharon Shelah
Gregory Cherlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Cherlin', 18)}}的其他基金
Logic, Group Theory, Combinatorics and Ergodic Theory
逻辑、群论、组合学和遍历理论
- 批准号:
1362974 - 财政年份:2014
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Descriptive Set Theory, Geometric Group Theory, and Combinatorial Model Theory
描述集合论、几何群论、组合模型论
- 批准号:
1101597 - 财政年份:2011
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Logic, Group theory, Combinatorics and Ergodic theory
逻辑、群论、组合学和遍历理论
- 批准号:
0600940 - 财政年份:2006
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Interactions of Logic with Group Theory and Combinatorics
逻辑与群论和组合学的相互作用
- 批准号:
0100794 - 财政年份:2001
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Theoretic Problems in Model Theory and Set Theory
数学科学:模型论和集合论中的群论问题
- 批准号:
9501176 - 财政年份:1995
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Aspects of the Model Theory of Finite, Pseudofinite and Homogeneous Structures
数学科学:有限、伪有限和齐次结构模型理论的组合方面
- 批准号:
9208302 - 财政年份:1992
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mid-Atlantic Mathematical Logic Seminar
数学科学:大西洋中部数理逻辑研讨会
- 批准号:
9121340 - 财政年份:1992
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant
Mathematical Sciences: Homogeneous Structures, Strongly Minimal Sets, Model Theoretic Algebra
数学科学:齐次结构、强极小集、模型理论代数
- 批准号:
8903006 - 财政年份:1989
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Classification Theory for Non-Elementary Classes
数学科学:非初级分类理论
- 批准号:
8603167 - 财政年份:1986
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Aleph-zero categorical Structures; Problems in p.a.c. Fields
数学科学:一些阿莱夫零分类结构;
- 批准号:
8603157 - 财政年份:1986
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
相似海外基金
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Research Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
'Leaders Like Us': Co-designing a framework to develop young physical activity leader programmes for girls from underserved groups
“像我们这样的领导者”:共同设计一个框架,为来自服务不足群体的女孩制定年轻的体育活动领导者计划
- 批准号:
MR/Z503976/1 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
- 批准号:
2241230 - 财政年份:2024
- 资助金额:
$ 16.79万 - 项目类别:
Standard Grant