Dimension Reduction and Data Visualization
降维和数据可视化
基本信息
- 批准号:9803459
- 负责人:
- 金额:$ 17.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803459Ker-Chau LiSliced inverse regression (SIR) and principal Hessian directions (PHD) are two newly established dimension reduction techniques. Their properties have been studied under general regression settings. This research involves the application of these methods to several problems arising from the following areas:(1) Monte Carlo and Bayesian computation,(2) nonlinear time series,(3) semiparametric modeling,(4) multivariate outcome and functional data analysis, and(5) uncertainty analysis of mathematical/physical/computer models.These settings are more complicated. In (1), importance sampling and rejection sampling are considered. The importance weights can be treated as the outcome values. The goal becomes the study of finding a simplified relationship between the weights and the sampled points. Dimension reduction can help find the modes of posterior distributions. Proper formulation of the problem is also needed in (2)-(4) before applying SIR/PHD.Dimensionality is an issue that can arise in every scientific field. Generally speaking, the difficulty lies on how to visualize a data set involving several variables or the shape of a function with several arguments. SIR/PHD are domain-free dimension reduction tools that can be conveniently applied in areas where mining data for information is crucial. For this research, the primary examples include ground water modeling, recovering signals from convoluted data sequences in digital communication, and analyzing nonlinear economic time series data.
9803459 Ker-Chau李氏逆回归(SIR)和主海森方向(PHD)是两种新的降维技术。它们的性质已在一般回归设置下进行了研究。这项研究涉及到这些方法在以下几个领域的应用:(1)蒙特卡罗和贝叶斯计算,(2)非线性时间序列,(3)半参数建模,(4)多元结果和函数数据分析,(5)数学/物理/计算机模型的不确定性分析。在(1)中,考虑了重要性抽样和拒收抽样。重要度权重可以作为结果值。目标变成了寻找权重和采样点之间的简化关系的研究。降维可以帮助找到后验分布的模式。在应用SIR/PHD之前,还需要在(2)-(4)中适当地表述问题。尺寸是每个科学领域都可能出现的问题。一般来说,困难在于如何可视化包含多个变量的数据集或具有多个参数的函数的形状。SIR/PHD是无域的降维工具,可以方便地应用于挖掘数据以获取信息至关重要的领域。对于本研究,主要的例子包括地下水建模、从数字通信中的卷积数据序列中恢复信号、以及分析非线性经济时间序列数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ker-Chau Li其他文献
Sliced Inverse Regression for Dimension Reduction
- DOI:
10.1080/01621459.1991.10475035 - 发表时间:
1991-06 - 期刊:
- 影响因子:3.7
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Honest Confidence Regions for Nonparametric Regression
- DOI:
10.1214/aos/1176347253 - 发表时间:
1989-09 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Sliced Inverse Regression
- DOI:
10.1002/9781118445112.stat03146 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
MP07-06 VERY-SMALL-NUCLEAR CIRCULATING TUMOR CELL (VSNCTC) AS A PUTATIVE BIOMARKER FOR VISCERAL METASTASIS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER (MCRPC)
- DOI:
10.1016/j.juro.2016.02.2209 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Jie-Fu Chen;Hao Ho;Elisabeth Hodara;Alexandar Ureno;Ann Go;Elizabeth Kaufman;Margarit Sievert;Daniel Luthringer;Jiaoti Huang;Ker-Chau Li;Zunfu Ke;Leland Chung;Hsian-Rong Tseng;Edwin Posadas - 通讯作者:
Edwin Posadas
Robust Regression Designs when the Design Space Consists of Finitely Many Points
- DOI:
10.1214/aos/1176346406 - 发表时间:
1984-03 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Ker-Chau Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ker-Chau Li', 18)}}的其他基金
A Novel Approach to Study Nonlinearity and Interaction in Regression
研究回归中非线性和相互作用的新方法
- 批准号:
1513622 - 财政年份:2015
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Study of dimension reduction methods driven by large scale biological data
大规模生物数据驱动的降维方法研究
- 批准号:
0707160 - 财政年份:2007
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
High Dimensional Methods for Complex Data Refining
复杂数据精炼的高维方法
- 批准号:
0406091 - 财政年份:2004
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Exploring Massive Gene Expression Data With A Novel Statistical Notion-Liquid Association
用新的统计概念——液体关联探索海量基因表达数据
- 批准号:
0201005 - 财政年份:2002
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Effective Dimension Reduction for Both Input and Output Variables
输入和输出变量的有效降维
- 批准号:
0104038 - 财政年份:2001
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Dimensional Data Analysis
数学科学:高维数据分析
- 批准号:
9505583 - 财政年份:1995
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 17.31万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
- 批准号:
2152774 - 财政年份:2022
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
DGECR-2021-00296 - 财政年份:2021
- 资助金额:
$ 17.31万 - 项目类别:
Discovery Launch Supplement
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2021
- 资助金额:
$ 17.31万 - 项目类别:
Discovery Grants Program - Individual
Frameworks for Generic Robust Inference, Mismeasured Spatial and Network Data, and Nonlinear Dimension Reduction
通用鲁棒推理、误测空间和网络数据以及非线性降维的框架
- 批准号:
1950969 - 财政年份:2020
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Dimension reduction and model selection for statistically challenging data
具有统计挑战性的数据的降维和模型选择
- 批准号:
DP180100836 - 财政年份:2018
- 资助金额:
$ 17.31万 - 项目类别:
Discovery Projects
Analysis of Functional Data without Dimension Reduction: Tests for Covariance Operators and Changepoint Problems
不降维的函数数据分析:协方差算子和变点问题的测试
- 批准号:
412898780 - 财政年份:2018
- 资助金额:
$ 17.31万 - 项目类别:
Research Grants
Dimension reduction for high-dimensional high-order data
高维高阶数据的降维
- 批准号:
1811868 - 财政年份:2018
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1817476 - 财政年份:2017
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant














{{item.name}}会员




