Effective Dimension Reduction for Both Input and Output Variables
输入和输出变量的有效降维
基本信息
- 批准号:0104038
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with the analysis of large data with many dimensions. For a variety of reasons, it is often desirable to reduce the dimensionality first. Using the techniques of sliced inverse regression and principal Hessian directions as building blocks, new methods are developed for more complex applications involving many input and output variables simultaneously. When the variables consist of time series or curves, automatic basis searching systems are derived for modeling both the deterministic trends and the stochastic patterns. Scientific data from a variety of disciplines have accumulated in unprecedented volume and complexity. This is exemplified by the massive gene expression profiles generated by microarray technologies. Hidden under many public accessible rich databases is a gold mine of biological messages, awaiting genomic researchers' exploration. Powerful statistical methods from clustering and classification have been successfully applied to dig them out. But the variety of information that can be distilled is so diverse that the pursuit of new paths is more than warranted. The new methods developed in this project will meet this demand. In particular, they can be used to visualize both the local and the global interaction in gene expression, to infer metabolic circuitry and enzyme functionality, to shed light on the multi-task coordination at different stages of the cell cycle, and to explore the relationship between drug responsiveness and gene profiles.
这项建议涉及到对多维大数据的分析。由于各种原因,通常希望首先进行降维。利用分片逆回归技术和主海森方向作为积木,发展了适用于同时涉及多个输入和输出变量的更复杂应用的新方法。当变量由时间序列或曲线组成时,自动基函数搜索系统被用来对确定性趋势和随机模式进行建模。来自不同学科的科学数据以前所未有的数量和复杂性积累起来。微阵列技术产生的大量基因表达谱就是例证。隐藏在许多公共可访问的丰富数据库下的是一座生物信息的金矿,等待基因组研究人员的探索。聚类和分类中强大的统计方法被成功地应用于挖掘它们。但可以提炼出的信息种类如此之多,以至于对新途径的追求是理所当然的。本项目开发的新方法将满足这一需求。特别是,它们可以用来可视化基因表达中的局部和全局相互作用,推断代谢回路和酶功能,阐明细胞周期不同阶段的多任务协调,以及探索药物反应性和基因图谱之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ker-Chau Li其他文献
Sliced Inverse Regression for Dimension Reduction
- DOI:
10.1080/01621459.1991.10475035 - 发表时间:
1991-06 - 期刊:
- 影响因子:3.7
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Honest Confidence Regions for Nonparametric Regression
- DOI:
10.1214/aos/1176347253 - 发表时间:
1989-09 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Sliced Inverse Regression
- DOI:
10.1002/9781118445112.stat03146 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
MP07-06 VERY-SMALL-NUCLEAR CIRCULATING TUMOR CELL (VSNCTC) AS A PUTATIVE BIOMARKER FOR VISCERAL METASTASIS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER (MCRPC)
- DOI:
10.1016/j.juro.2016.02.2209 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Jie-Fu Chen;Hao Ho;Elisabeth Hodara;Alexandar Ureno;Ann Go;Elizabeth Kaufman;Margarit Sievert;Daniel Luthringer;Jiaoti Huang;Ker-Chau Li;Zunfu Ke;Leland Chung;Hsian-Rong Tseng;Edwin Posadas - 通讯作者:
Edwin Posadas
Robust Regression Designs when the Design Space Consists of Finitely Many Points
- DOI:
10.1214/aos/1176346406 - 发表时间:
1984-03 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Ker-Chau Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ker-Chau Li', 18)}}的其他基金
A Novel Approach to Study Nonlinearity and Interaction in Regression
研究回归中非线性和相互作用的新方法
- 批准号:
1513622 - 财政年份:2015
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Study of dimension reduction methods driven by large scale biological data
大规模生物数据驱动的降维方法研究
- 批准号:
0707160 - 财政年份:2007
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
High Dimensional Methods for Complex Data Refining
复杂数据精炼的高维方法
- 批准号:
0406091 - 财政年份:2004
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Exploring Massive Gene Expression Data With A Novel Statistical Notion-Liquid Association
用新的统计概念——液体关联探索海量基因表达数据
- 批准号:
0201005 - 财政年份:2002
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Dimension Reduction and Data Visualization
降维和数据可视化
- 批准号:
9803459 - 财政年份:1998
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Dimensional Data Analysis
数学科学:高维数据分析
- 批准号:
9505583 - 财政年份:1995
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
相似海外基金
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
- 批准号:
22K03874 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
- 批准号:
2152774 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
- 批准号:
2052109 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10196077 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10366073 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
- 批准号:
2105818 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant