High Dimensional Methods for Complex Data Refining

复杂数据精炼的高维方法

基本信息

  • 批准号:
    0406091
  • 负责人:
  • 金额:
    $ 20.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

Regression analysis aims at the study of the relationship between input variables X and out variables Y. Difficulties occur when no parametric model is known, and yet the number of variables is large. Dimension reduction methods for overcoming such difficulties have been investigated by many authors. To embrace many aspects of dimension reduction under one common roof, a new forum called the Z-mediated approach is proposed. In this setting, in addition to the input and out variables, a third group of variables Z is introduced, which fills the role of mediating the change in the relationship between X and Y. Typically the number of Z variables is much larger than the number of X or Y variables. But only a small portion of Z variables may have a real influence. New methods will be constructed to reduce the dimension of X, Y and Z. A wave of cutting-edge statistical activities have arrived at a time when there is an explosive demand for processing large data sets in the life sciences, such as those from microarrays and medical imaging. The motivation of this proposal comes from a dynamic perspective about complex gene regulation where two functionally associated genes X and Y may be mediated by a third unknown gene Z. The challenge is how to identify a short list of candidate gene Z based on microarray data alone. The methodology developed here can be used for elucidating the interplay between disease, genes, and metabolic pathways, thus contributing to drug discovery and benefiting society. The results will be disseminated not only via standard publication, but also by constructing a website for public access. Interdisciplinary training of students to work in bioinformatics is also provided.
回归分析的目的是研究输入变量X和输出变量Y之间的关系。当参数模型未知,但变量数量较多时,就会出现困难。克服这些困难的降维方法已经被许多作者研究过。为了将降维的多个方面包含在一个共同的屋檐下,提出了一种新的论坛,称为Z-中介方法。在这种情况下,除了输入和输出变量外,还引入了第三组变量Z,它起到了调节X和Y之间关系变化的作用。通常情况下,Z变量的数量远远大于X或Y变量的数量。但Z变量中只有一小部分可能会产生真正的影响。将构建新的方法来降低X、Y和Z的维度。在生命科学对处理大数据集的爆炸性需求之际,一波尖端统计活动已经到来,例如来自微阵列和医学成像的数据。这一建议的动机来自于一种关于复杂基因调控的动态观点,其中两个功能相关的基因X和Y可能由第三个未知基因Z介导。挑战是如何仅基于微阵列数据来识别候选基因Z的简短列表。这里发展的方法学可以用来阐明疾病、基因和代谢途径之间的相互作用,从而有助于药物发现和造福社会。结果不仅将通过标准出版物传播,还将通过建立一个供公众访问的网站来传播。还提供了学生从事生物信息学工作的跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ker-Chau Li其他文献

Sliced Inverse Regression for Dimension Reduction
Honest Confidence Regions for Nonparametric Regression
  • DOI:
    10.1214/aos/1176347253
  • 发表时间:
    1989-09
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ker-Chau Li
  • 通讯作者:
    Ker-Chau Li
Sliced Inverse Regression
  • DOI:
    10.1002/9781118445112.stat03146
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ker-Chau Li
  • 通讯作者:
    Ker-Chau Li
MP07-06 VERY-SMALL-NUCLEAR CIRCULATING TUMOR CELL (VSNCTC) AS A PUTATIVE BIOMARKER FOR VISCERAL METASTASIS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER (MCRPC)
  • DOI:
    10.1016/j.juro.2016.02.2209
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jie-Fu Chen;Hao Ho;Elisabeth Hodara;Alexandar Ureno;Ann Go;Elizabeth Kaufman;Margarit Sievert;Daniel Luthringer;Jiaoti Huang;Ker-Chau Li;Zunfu Ke;Leland Chung;Hsian-Rong Tseng;Edwin Posadas
  • 通讯作者:
    Edwin Posadas
Robust Regression Designs when the Design Space Consists of Finitely Many Points
  • DOI:
    10.1214/aos/1176346406
  • 发表时间:
    1984-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ker-Chau Li
  • 通讯作者:
    Ker-Chau Li

Ker-Chau Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ker-Chau Li', 18)}}的其他基金

A Novel Approach to Study Nonlinearity and Interaction in Regression
研究回归中非线性和相互作用的新方法
  • 批准号:
    1513622
  • 财政年份:
    2015
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Study of dimension reduction methods driven by large scale biological data
大规模生物数据驱动的降维方法研究
  • 批准号:
    0707160
  • 财政年份:
    2007
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Exploring Massive Gene Expression Data With A Novel Statistical Notion-Liquid Association
用新的统计概念——液体关联探索海量基因表达数据
  • 批准号:
    0201005
  • 财政年份:
    2002
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Effective Dimension Reduction for Both Input and Output Variables
输入和输出变量的有效降维
  • 批准号:
    0104038
  • 财政年份:
    2001
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Dimension Reduction and Data Visualization
降维和数据可视化
  • 批准号:
    9803459
  • 财政年份:
    1998
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: High Dimensional Data Analysis
数学科学:高维数据分析
  • 批准号:
    9505583
  • 财政年份:
    1995
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhancement of low-dimensional embedding methods for complex structures in spatiotemporal data with their applications
时空数据中复杂结构的低维嵌入方法及其应用的增强
  • 批准号:
    23K11018
  • 财政年份:
    2023
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ordered Alignment Methods for Complex, High-Dimensional Data
职业:复杂、高维数据的有序对齐方法
  • 批准号:
    2144050
  • 财政年份:
    2022
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2022
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2021
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Discovery Grants Program - Individual
Development of complex moment-based methods and mathematical risk avoidance techniques for infinite dimensional eigenvalue problems
针对无限维特征值问题开发复杂的基于矩的方法和数学风险规避技术
  • 批准号:
    21H03451
  • 财政年份:
    2021
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维和复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2020
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    9978956
  • 财政年份:
    2019
  • 资助金额:
    $ 20.32万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10159966
  • 财政年份:
    2019
  • 资助金额:
    $ 20.32万
  • 项目类别:
Statistical Methods for Analyzing Complex, Multi-dimensional Data from Cross-sectional and Longitudinal Mental Health Studies
分析来自横断面和纵向心理健康研究的复杂、多维数据的统计方法
  • 批准号:
    10611987
  • 财政年份:
    2019
  • 资助金额:
    $ 20.32万
  • 项目类别:
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维和复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2019
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了