Study of dimension reduction methods driven by large scale biological data
大规模生物数据驱动的降维方法研究
基本信息
- 批准号:0707160
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The growing awareness of the importance of dimension reduction in bioinformatics has led to the development of new techniques. Various extensions of sliced inverse regression(SIR) have appeared. More recently a new way of studying the relationship between variables in a complex data system, called liquid association (LA), was proposed. LA describes how variation in the pattern of association between a pair of variables, including its sign and strength, is mediated by a third variable from the background. In this proposal, the investigators will (1) develop hybrid dimension reduction methods that blend in ideas from PCA (principal component analysis), K-mean, SIR, PHD (Principale Hessian Direction), LA and a variety of clustering methods; (2) provide effective dimension reduction tools for incorporating clinical or other phenotype data involving life time which are usually subject to censoring; (3) investigate related statistical inference issues concerning false positives; (4) investigate the pattern of cellular coordination at the functional module level; (5) develop LA based methods for variable selection; (6) provide better insight to intrinsic nonlinearity in marginal Gaussian models.The recent rapid growth in the public repertoire of biological data and knowledge resources has been astonishing. This includes the completion of genome sequencing for human and many species, the stride in the SNP detection and international HapMap project, the accumulation of full genome microarray gene expression data under a number of conditions for numerous organisms and tissues, the identification of the high density genetic markers, protein-protein interaction and complexes, as well as the availability of various gene annotation websites featuring both functional and structural information of the gene products, their biological roles and relevance to disease studies. Such open data resources hold the promise of benefiting numerous projects aiming at solving detail genetic profiles predisposing to complex diseases and their trait components. However, researchers are also facing the insurmountable difficulties due to the enormous complexity of data structure and exceedingly high dimensionality. To succeed, it is critical to continue the research on developing new computational arsenals. Modeling through probabilistic and statistical reasoning has found numerous compelling applications.
降维在生物信息学中的重要性的日益认识导致了新技术的发展。切片逆回归(SIR)的各种扩展已经出现。最近提出了一种研究复杂数据系统中变量之间关系的新方法,称为液体关联(LA)。LA描述了一对变量之间的关联模式的变化,包括它的符号和强度,是如何由背景中的第三个变量介导的。在这项提案中,研究人员将(1)开发混合降维方法,融合PCA的思想(主成分分析),K均值,SIR,PHD(Principale Hessian Direction)、LA和各种聚类方法;(2)提供有效的降维工具,用于合并涉及寿命的临床或其他表型数据,这些数据通常受到删失;(3)研究与假阳性相关的统计推断问题;(4)研究功能模块水平上的细胞协调模式;(5)开发基于LA的变量选择方法;(六)提供了更好的洞察边际高斯模型的内在非线性。最近的快速增长,在公共剧目的生物数据和知识资源惊人。这包括人类和许多物种基因组测序的完成,SNP检测和国际HapMap计划的跨越,许多生物和组织在许多条件下的全基因组微阵列基因表达数据的积累,高密度遗传标记,蛋白质-蛋白质相互作用和复合物的鉴定,以及提供各种基因注释网站,介绍基因产物的功能和结构信息,它们的生物学作用和与疾病研究的相关性。这种开放的数据资源有望使许多旨在解决导致复杂疾病及其特征成分的详细遗传图谱的项目受益。然而,由于数据结构的巨大复杂性和极高的维数,研究人员也面临着难以克服的困难。为了取得成功,继续研究开发新的计算武器库至关重要。通过概率和统计推理建模已经发现了许多引人注目的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ker-Chau Li其他文献
Sliced Inverse Regression for Dimension Reduction
- DOI:
10.1080/01621459.1991.10475035 - 发表时间:
1991-06 - 期刊:
- 影响因子:3.7
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Honest Confidence Regions for Nonparametric Regression
- DOI:
10.1214/aos/1176347253 - 发表时间:
1989-09 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Sliced Inverse Regression
- DOI:
10.1002/9781118445112.stat03146 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
MP07-06 VERY-SMALL-NUCLEAR CIRCULATING TUMOR CELL (VSNCTC) AS A PUTATIVE BIOMARKER FOR VISCERAL METASTASIS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER (MCRPC)
- DOI:
10.1016/j.juro.2016.02.2209 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Jie-Fu Chen;Hao Ho;Elisabeth Hodara;Alexandar Ureno;Ann Go;Elizabeth Kaufman;Margarit Sievert;Daniel Luthringer;Jiaoti Huang;Ker-Chau Li;Zunfu Ke;Leland Chung;Hsian-Rong Tseng;Edwin Posadas - 通讯作者:
Edwin Posadas
Robust Regression Designs when the Design Space Consists of Finitely Many Points
- DOI:
10.1214/aos/1176346406 - 发表时间:
1984-03 - 期刊:
- 影响因子:4.5
- 作者:
Ker-Chau Li - 通讯作者:
Ker-Chau Li
Ker-Chau Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ker-Chau Li', 18)}}的其他基金
A Novel Approach to Study Nonlinearity and Interaction in Regression
研究回归中非线性和相互作用的新方法
- 批准号:
1513622 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
High Dimensional Methods for Complex Data Refining
复杂数据精炼的高维方法
- 批准号:
0406091 - 财政年份:2004
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Exploring Massive Gene Expression Data With A Novel Statistical Notion-Liquid Association
用新的统计概念——液体关联探索海量基因表达数据
- 批准号:
0201005 - 财政年份:2002
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Effective Dimension Reduction for Both Input and Output Variables
输入和输出变量的有效降维
- 批准号:
0104038 - 财政年份:2001
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Dimension Reduction and Data Visualization
降维和数据可视化
- 批准号:
9803459 - 财政年份:1998
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Dimensional Data Analysis
数学科学:高维数据分析
- 批准号:
9505583 - 财政年份:1995
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
相似国自然基金
高维参数和半参数模型下的似然推断
- 批准号:11871263
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
- 批准号:51673200
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
混沌动力系统中的广义熵和维数
- 批准号:10571086
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
- 批准号:
22K03874 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
- 批准号:
2152774 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Characterize psychological and behavioral dimensions of cardiac arrest survivorship, and their association with 1-year mortality, cardiovascular disease risk, and health-related quality of life
描述心脏骤停幸存者的心理和行为维度及其与 1 年死亡率、心血管疾病风险和健康相关生活质量的关系
- 批准号:
10211850 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
- 批准号:
2052109 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10196077 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10366073 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别: