CAREER: Semiconductor Tectons: Materials at the Interface
职业:半导体构造:界面材料
基本信息
- 批准号:9875940
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-12-15 至 2003-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9875940StrouseThe goal of this CAREER project is two-fold: 1)to develop synthetic methodologies to allow the systematic assembly of II-VI nano-scale semiconductors into periodic electronic networks; 2)to study the electronic coupling between components of the array. Assembly will be pursued by the adaptation of crystal engineering techniques to semiconductor clusters ( 3 nm) using site-specific modification of the cluster edges with self-assembling organic linkers. The final structure is a 3 dimensional diamandoid architecture composed of adamantanoid semiconductor clusters linked at the apex of the tetrahedral structures. Choice of the spacer and choice of the semiconductor cluster size can systematically tune the level of electronic coupling. Studies will be conducted to understand fundamental ways to systematically modify and network nano-clusters into a 3-dimensional structures. The approach to address these issues is to probe the synthetic preparation, ligand substitution and capping influence on Cd and Zn chalcogenide clusters consisting of variable core structures. Metallo-thiolates are structural analogs of adamantane and can be used to produce diamond lattices. Application of mass-spectroscopic techniques will be used for determination of the parent cluster purity, as well as directly addressing stability of cluster materials. Information on exchange dynamics in these materials will be probed by comparison of Raman and NMR data for the substituted clusters. Exploitation of tectonic approaches for self-assembling nano-materials using polymeric connectors will be pursued for applications in the assembly of compliant electronic materials. Materials assembled from polymeric spacers are inherently flexible. The flexibility can be utilized to control coupling in the lattice potentially allowing a new path for propagating information via lattice modulation rather than conventional electronic biasing. Development of such materials requires focus on both molecular scale assemblies of nanoscale materials and the characterization of electronic transport phenomena.%%%The project addresses fundamental research issues in a topical area of materials science having high potential technological relevance. The research will contribute basic materials science, chemistry, and engineering knowledge at a fundamental level to important aspects of electronic materials. The scope of the project will expose students to challenges in materials synthesis, processing, and characterization. An important feature of the project is the strong emphasis on education, and on the integration of research and education.***9875940StrouseThe goal of this CAREER project is two-fold: 1)to develop synthetic methodologies to allow the systematic assembly of II-VI nano-scale semiconductors into periodic electronic networks; 2)to study the electronic coupling between components of the array. Assembly will be pursued by the adaptation of crystal engineering techniques to semiconductor clusters ( 3 nm) using site-specific modification of the cluster edges with self-assembling organic linkers. The final structure is a 3 dimensional diamandoid architecture composed of adamantanoid semiconductor clusters linked at the apex of the tetrahedral structures. Choice of the spacer and choice of the semiconductor cluster size can systematically tune the level of electronic coupling. Studies will be conducted to understand fundamental ways to systematically modify and network nano-clusters into a 3-dimensional structures. The approach to address these issues is to probe the synthetic preparation, ligand substitution and capping influence on Cd and Zn chalcogenide clusters consisting of variable core structures. Metallo-thiolates are structural analogs of adamantane and can be used to produce diamond lattices. Application of mass-spectroscopic techniques will be used for determination of the parent cluster purity, as well as directly addressing stability of cluster materials. Information on exchange dynamics in these materials will be probed by comparison of Raman and NMR data for the substituted clusters. Exploitation of tectonic approaches for self-assembling nano-materials using polymeric connectors will be pursued for applications in the assembly of compliant electronic materials. Materials assembled from polymeric spacers are inherently flexible. The flexibility can be utilized to control coupling in the lattice potentially allowing a new path for propagating information via lattice modulation rather than conventional electronic biasing. Development of such materials requires focus on both molecular scale assemblies of nanoscale materials and the characterization of electronic transport phenomena.%%%The project addresses fundamental research issues in a topical area of materials science having high potential technological relevance. The research will contribute basic materials science, chemistry, and engineering knowledge at a fundamental level to important aspects of electronic materials. The scope of the project will expose students to challenges in materials synthesis, processing, and characterization. An important feature of the project is the strong emphasis on education, and on the integration of research and education.***
9875940 Strouse这个CAREER项目的目标有两个方面:1)开发合成方法,使II-VI纳米级半导体系统组装成周期性电子网络; 2)研究阵列组件之间的电子耦合。组装将追求通过晶体工程技术的适应半导体集群(3纳米),使用自组装有机连接器的集群边缘的特定位点的修改。最终的结构是由在四面体结构的顶点处连接的金刚烷半导体簇组成的3维金刚烷结构。间隔物的选择和半导体簇尺寸的选择可以系统地调节电子耦合的水平。将进行研究,以了解系统地修改和网络纳米簇成三维结构的基本方法。解决这些问题的方法是探索合成制备,配体取代和盖帽的影响,镉和锌硫属化合物组成的可变核心结构的簇合物。金属硫醇盐是金刚烷的结构类似物,可用于生产金刚石晶格。质谱技术的应用将用于确定母簇的纯度,以及直接解决簇材料的稳定性。这些材料中的交换动力学信息将通过比较取代簇的拉曼和NMR数据来探测。开发构造方法的自组装纳米材料使用聚合物连接器将追求在顺应性电子材料的组装中的应用。由聚合物间隔物组装的材料具有固有的柔性。这种灵活性可以用来控制晶格中的耦合,从而潜在地允许通过晶格调制而不是传统的电子偏置来传播信息的新路径。这种材料的开发需要关注纳米材料的分子尺度组装和电子输运现象的表征。该项目涉及材料科学专题领域的基础研究问题,具有很高的潜在技术相关性。该研究将为电子材料的重要方面提供基础材料科学,化学和工程知识。该项目的范围将使学生面临材料合成,加工和表征方面的挑战。该项目的一个重要特点是高度重视教育,以及研究与教育的结合。9875940 Strouse这个CAREER项目的目标有两个方面:1)开发合成方法,使II-VI纳米级半导体系统组装成周期性电子网络; 2)研究阵列组件之间的电子耦合。组装将追求通过晶体工程技术的适应半导体集群(3纳米),使用自组装有机连接器的集群边缘的特定位点的修改。最终的结构是由在四面体结构的顶点处连接的金刚烷半导体簇组成的3维金刚烷结构。间隔物的选择和半导体簇尺寸的选择可以系统地调节电子耦合的水平。将进行研究,以了解系统地修改和网络纳米簇成三维结构的基本方法。解决这些问题的方法是探索合成制备,配体取代和盖帽的影响,镉和锌硫属化合物组成的可变核心结构的簇合物。金属硫醇盐是金刚烷的结构类似物,可用于生产金刚石晶格。质谱技术的应用将用于确定母簇的纯度,以及直接解决簇材料的稳定性。这些材料中的交换动力学信息将通过比较取代簇的拉曼和NMR数据来探测。开发构造方法的自组装纳米材料使用聚合物连接器将追求在顺应性电子材料的组装中的应用。由聚合物间隔物组装的材料具有固有的柔性。这种灵活性可以用来控制晶格中的耦合,从而潜在地允许通过晶格调制而不是传统的电子偏置来传播信息的新路径。这种材料的开发需要关注纳米材料的分子尺度组装和电子输运现象的表征。该项目涉及材料科学专题领域的基础研究问题,具有很高的潜在技术相关性。该研究将为电子材料的重要方面提供基础材料科学,化学和工程知识。该项目的范围将使学生面临材料合成,加工和表征方面的挑战。该项目的一个重要特点是高度重视教育,以及研究与教育的结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Strouse其他文献
Geoffrey Strouse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Strouse', 18)}}的其他基金
Tuning Plasmonic and Magneto-Plasmonic Behavior in 4-d Transition Metal Doped Indium Oxide
调节 4 维过渡金属掺杂氧化铟中的等离子体和磁等离子体行为
- 批准号:
1905757 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SusChEM: Understanding Microwave Interactions to Control Magnetic Nanocrystal Growth from a Single Source Precursor
SusChEM:了解微波相互作用以控制单源前驱体的磁性纳米晶体生长
- 批准号:
1608364 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of Probes and an Upgrade to the Console for a 500 MHz wide Bore Solids NMR
MRI:购买探头并升级至 500 MHz 宽孔固体 NMR 控制台
- 批准号:
1126587 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Design of Microwave Selective Oygen Atom Transfer Reagents for Controlled Metal Oxide Formation
用于控制金属氧化物形成的微波选择性氧原子转移试剂的设计
- 批准号:
0911080 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Carriers, Ferromagnetism, and Spin Waves in Mn doped Cd Chalcogenide Nanocrystals
Mn 掺杂 Cd 硫族化物纳米晶体中的载流子、铁磁性和自旋波
- 批准号:
0701462 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
- 批准号:
DP240102230 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
- 批准号:
2335175 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GRASP - GREEN AGILE SEMICONDUCTOR PRODUCTION
GRASP - 绿色敏捷半导体生产
- 批准号:
10099437 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
- 批准号:
2335588 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Engines: Central Florida Semiconductor Innovation Engine
NSF 引擎:佛罗里达州中部半导体创新引擎
- 批准号:
2315320 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
- 批准号:
EP/Z531091/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:
2347035 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant