VPW: Mathematical Analysis of the Early Events in Cell Signaling

VPW:细胞信号传导早期事件的数学分析

基本信息

  • 批准号:
    9896314
  • 负责人:
  • 金额:
    $ 4.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-15 至 2000-05-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carla Wofsy其他文献

Kinetics of tyrosine phosphorylation when IgE dimers bind to FC∊ receptors on rat basophilic leukemia cells.
  • DOI:
    10.1016/s0021-9258(17)35411-x
  • 发表时间:
    1995-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Carla Wofsy;Ute M. Kent;Su-Yau Mao;Henry Metzger;Byron Goldstein
  • 通讯作者:
    Byron Goldstein

Carla Wofsy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carla Wofsy', 18)}}的其他基金

Quantitative Methods for Studying Cell Signaling Mediated by Multisubunit Immuno-receptors
研究多亚基免疫受体介导的细胞信号传导的定量方法
  • 批准号:
    9723897
  • 财政年份:
    1997
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Continuing Grant
VPW: Mathematical Analysis of the Early Events in Cell Signaling
VPW:细胞信号传导早期事件的数学分析
  • 批准号:
    9627118
  • 财政年份:
    1996
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Analysis of Receptor Aggregation on Cell Surfaces and its Effects on Cell Function
数学科学:细胞表面受体聚集及其对细胞功能影响的数学分析
  • 批准号:
    9101969
  • 财政年份:
    1991
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical Models in Cell Biology:Responses to Molecular Signals
数学科学:细胞生物学中的数学模型:对分子信号的响应
  • 批准号:
    8911623
  • 财政年份:
    1989
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Standard Grant
1977 Science Faculty Professional Development Program
1977 理学院专业发展计划
  • 批准号:
    7717445
  • 财政年份:
    1977
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Standard Grant

相似海外基金

ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems
ARC 细胞系统数学分析卓越中心
  • 批准号:
    CE230100001
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    ARC Centres of Excellence
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Research Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
  • 批准号:
    23KJ0682
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
  • 批准号:
    2887435
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Studentship
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
  • 批准号:
    22KJ2953
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
  • 批准号:
    10729420
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246724
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Continuing Grant
Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
  • 批准号:
    2306254
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Continuing Grant
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
  • 批准号:
    23K03225
  • 财政年份:
    2023
  • 资助金额:
    $ 4.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了