An Ordinary Least Squares (OLS) Solution to Handling Spatial Autocorrelation Latent in Georeferenced Data
处理地理参考数据中潜在空间自相关的普通最小二乘 (OLS) 解决方案
基本信息
- 批准号:9905213
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objective of this project is to exploit mathematical quantities related to the geography of georeferenced data-that is, data that are tagged to locations on the earth's surface. Its importance lies in its ability to allow scientists to work with more sophisticated and realistic models of various kinds of processes distributed across regions of the earth. The essence of the research is motivated by a recognition that the Moran Coefficient (a spatial autocorrelation index) can be decomposed into orthogonal map pattern components. This decomposition relates the Moran Coefficient directly to a standard linear regression, in which corresponding eigenvectors can be used as predictors. The algebraic structure is very similar to that of restricted maximum likelihood (REML) estimation. The analytical work will be complemented by numerical approaches that will focus on Markov Chain Monte Carlo (MCMC) analysis, empirical Bayes analysis, and simulation experiments. The basic knowledge advancement will be a description of auto-Poisson distributions containing positive spatial autocorrelation, and thus, a better understanding of how to interpret spatial data that are georeferenced (e.g. most satellite data). This research is significant to the advancement of scientific knowledge because it will establish the statistical theory necessary to convert georeferenced data into value-added information. The project addresses relevant societal concerns in at least three different ways: (1) it will contribute to an integration of satellite and social science data, a current goal of NASA; (2) it will help demystify spatial statistics, allowing maps to be viewed where today equations must be viewed; and, (3) it will make a sizeable part of statistics for spatial data more accessible to a larger audience by recasting this topic in conventional regression terms that are readily understood. Thus, the research will enable society's better understanding of such concerns as superfund remediation strategies pursued by the EPA, small-area estimation programs being implemented by various federal data collection agencies, and geographic disease cluster evaluations by national health organizations such as the NCI.
该项目的总体目标是利用与地理参考数据(即标记到地球表面位置的数据)地理相关的数学量。 它的重要性在于它能够让科学家们使用分布在地球各区域的各种过程的更复杂和更现实的模型。 研究的本质是由一个认识,莫兰系数(空间自相关指数)可以分解成正交的地图模式分量的动机。 这种分解将Moran系数直接与标准线性回归相关联,其中相应的特征向量可以用作预测因子。 其代数结构与约束最大似然估计(REML)非常相似。 分析工作将辅以数值方法,将侧重于马尔可夫链蒙特卡罗(MCMC)分析,经验贝叶斯分析和模拟实验。基本知识的进步将是描述包含正空间自相关的自动泊松分布,从而更好地理解如何解释地理参考的空间数据(例如大多数卫星数据)。 这项研究对科学知识的进步具有重要意义,因为它将建立将地理参考数据转换为增值信息所需的统计理论。 该项目至少以三种不同的方式处理有关的社会关切:(1)它将有助于卫星数据和社会科学数据的结合,这是美国航天局目前的一个目标;(2)它将有助于揭开空间统计的神秘面纱,使人们能够在今天必须查看方程式的地方查看地图;以及(3)通过用易于理解的传统回归术语重新描述这一主题,将使空间数据统计的很大一部分更容易为更多受众所用。因此,该研究将使社会更好地了解这些问题,如EPA追求的超级基金补救策略,小面积的估计方案正在实施的各种联邦数据收集机构,和国家卫生组织,如NCI的地理疾病集群评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Griffith其他文献
Denoising a model employing automated bandwidth selection procedures and pre-whitened Euclidean- based quadratic surrogates in PROC ARIMA for optimizing asymptotic expansions and simulations of onchocerciasis endemic transmission zones in Burkina Faso
使用 PROC ARIMA 中的自动带宽选择程序和预白化的基于欧几里得的二次代理对模型进行去噪,以优化布基纳法索盘尾丝虫病流行传播区的渐近扩展和模拟
- DOI:
10.5897/jphe2013.0629 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
B. Jacob;Robert J. Novak;L. Toe;Moussa S. Sanfo;R. Tingueria;Alain B Paré;Mounkaila Noma;Daniel Griffith;T. Unnasch - 通讯作者:
T. Unnasch
High throughput measurements of direct activation domain-coactivator interactions
- DOI:
10.1016/j.bpj.2022.11.576 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Nicole DelRosso;Peter Suzuki;Daniel Griffith;Alex S. Holehouse;Lacramioara Bintu;Polly Fordyce - 通讯作者:
Polly Fordyce
LOCATE reveals electrostatic “islands” and “hotspots” are important for a disordered clock protein's interactions to regulate clock robustness
- DOI:
10.1016/j.bpj.2021.11.1731 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Meaghan S. Jankowski;Daniel Griffith;Divya G. Shastry;Jacqueline F. Pelham;Joshua Thomas;Pankaj Karande;Alex S. Holehouse;Jennifer M. Hurley - 通讯作者:
Jennifer M. Hurley
Implementing Approximations to Extreme Eigenvalues and Eigenvalues of Irregular Surface Partitionings for Use in SAR and CAR Models
- DOI:
10.1016/j.proenv.2015.05.013 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Daniel Griffith;Roger Bivand;Yongwan Chun - 通讯作者:
Yongwan Chun
A critical study of a 100-year-old patient receiving a dynamic hip screw
- DOI:
10.1016/j.joon.2007.08.001 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:
- 作者:
Daniel Griffith - 通讯作者:
Daniel Griffith
Daniel Griffith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Griffith', 18)}}的其他基金
Determining Qualitative Geographic Sample Size in the Presence of Spatial Autocorrelation
在存在空间自相关的情况下确定定性地理样本量
- 批准号:
1262717 - 财政年份:2013
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Geography-Based Exposure Assessment for Urban Metals
基于地理的城市金属暴露评估
- 批准号:
0552588 - 财政年份:2005
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: APPROXIMATING EIGENSYSTEMS OF MATRICES USED IN SPATIAL ANALYSIS
合作研究:空间分析中使用的矩阵本征系统的近似
- 批准号:
0611883 - 财政年份:2005
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: APPROXIMATING EIGENSYSTEMS OF MATRICES USED IN SPATIAL ANALYSIS
合作研究:空间分析中使用的矩阵本征系统的近似
- 批准号:
0435714 - 财政年份:2004
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Geography-Based Exposure Assessment for Urban Metals
基于地理的城市金属暴露评估
- 批准号:
0400559 - 财政年份:2003
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Geography-Based Exposure Assessment for Urban Metals
基于地理的城市金属暴露评估
- 批准号:
0221949 - 财政年份:2002
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Uncovering Relationships Between Geo-Statistical and Spatial Autoregressive Modelling
揭示地理统计和空间自回归建模之间的关系
- 批准号:
9507855 - 财政年份:1995
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Computationally Simplified Estimators for Spatial Autoregressive Models
空间自回归模型的计算简化估计器
- 批准号:
9122232 - 财政年份:1992
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research on the Importance of Spatial Effects in Applied Regression Analysis in Regional Science and Geography
区域科学与地理学应用回归分析中空间效应重要性的合作研究
- 批准号:
8722086 - 财政年份:1988
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
NATO Conference on Transformations Through Space and Time; Denmark, August 3-14, 1985.
北约空间和时间转型会议;
- 批准号:
8508460 - 财政年份:1985
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
相似海外基金
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
- 批准号:
569021-2022 - 财政年份:2022
- 资助金额:
$ 20.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
A Study of Advanced Least Squares Estimation Methods to Support Spatial Data Infrastructure
支持空间数据基础设施的先进最小二乘估计方法研究
- 批准号:
534146-2019 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs
一阶偏微分方程组的最小二乘 PGD 模拟谱元方法
- 批准号:
2316393 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Studentship
A divide and conquer attack on challenging least squares problems
针对具有挑战性的最小二乘问题的分而治之攻击
- 批准号:
EP/W009676/1 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Research Grant
Matrix completion using de-biased alternating least squares
使用去偏交替最小二乘法完成矩阵
- 批准号:
566268-2021 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Robust Least Squares Discretization for Mixed Variational Formulations
混合变分公式的稳健最小二乘离散化
- 批准号:
2011615 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Mixed least-squares formulations within the framework of the theory of porous media for modeling ionic polymer-metal composites
多孔介质理论框架内的混合最小二乘公式用于模拟离子聚合物-金属复合材料
- 批准号:
445534800 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Research Grants
A Study of Advanced Least Squares Estimation Methods to Support Spatial Data Infrastructure
支持空间数据基础设施的先进最小二乘估计方法研究
- 批准号:
534146-2019 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
- 批准号:
487299-2016 - 财政年份:2019
- 资助金额:
$ 20.39万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




