Calderon-Zygmund Operators in Non-Classical Situations: Weighted Norm Inequalities with Matrix Weights, Operators on Non-Homogeneous Spaces and Analytic Capacity
非经典情况下的卡尔德隆-齐格蒙德算子:带矩阵权重的加权范数不等式、非齐次空间上的算子和分析能力
基本信息
- 批准号:9970395
- 负责人:
- 金额:$ 29.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9970395Principal Investigators: Fedor Nazarov, Serguei Treil, Alexandre VolbergAbstract: The first part of the project deals with the theory of matrix weights; the second is concerned with the theory of Calderon -Zygmund operators on nonhomogeneous spaces. The primary motivations for and applications of the first part stem from the theory of stationary random processes; namely, from the study of multivariate processes, which dates back to work of Kolmogoroff and Wiener. The theory of matrix weights has many connections with both finite dimensional geometry and noncommutative harmonic analysis. The second part of the project is closely related to problems of geometric measure theory, analytic capacity, partial differential equations, and image processing. The PIs have managed to free the theory of Calderon-Zygmund operators of an unnecessary homogeneity assumption, historically one of the cornerstones of that theory. So far their research has led to many new results in the theory of regularity of multivariate random processes. It has had an impact on geometric measure theory as well. For example, their methods yield an alternative (and rather more streamlined) approach to Guy David's solution of the famous Vitushkin's conjecture that unrectifiable one-dimesional sets have zero analytic capacity.A central part of modern harmonic analysis deals with "singular operators" of one type or another. Such operators are pervasive in the scientific landscape: they turn up in mathematical physics, probability, engineering, image processing, etc. The expression "singular operator" can take many different meanings, but whatever its precise meaning within a given context, the term almost always reflects the fact that only subtle tools can be applied to the investigation of such operators. They are resistant to probing by "brute force" methods. In particular, one needs to employ techniques that are sensitive to certain intrinsic cancellations in order to gain control over the singular behavior. So-called Calderon-Zygmund theory appeared in the early 1950s as a first means of coping with singular operators of the type under scrutiny in this project. The PIs broaden this theory in two directions. First, they allow the number of degrees of freedom enjoyed by the operators to increase, thus exposing a whole new kind of cancellation. Second, they make a rather bold move by disgarding one of the basic and, it was earlier thought, indispensible assumptions of the theory. In light of discoveries by the PIs, this assumption (known technically as the homogeneity of the underlying space) seems now to be completely superflous. The PIs' approach has already had several significant consequences: solutions to several long-standing problems, streamlined proofs for other important but difficult results, and the general feature of making complicated arguments much shorter and more lucid.
提案:DMS-9970395主要研究人员:Fedor Nazarov,Serguei Treil,Alexandre Volberg摘要:该项目的第一部分涉及矩阵权理论;第二部分涉及非齐次空间上的Calderon -Zygmund算子理论。第一部分的主要动机和应用源于平稳随机过程理论;即,来自多元过程的研究,该研究可以追溯到Kolmogoroff和Wiener的工作。矩阵权理论与有限维几何和非交换调和分析有许多联系。该项目的第二部分是密切相关的几何测量理论,分析能力,偏微分方程和图像处理的问题。PI成功地将Calderon-Zygmund算子理论从不必要的同质性假设中解放出来,这是该理论的历史基石之一。迄今为止,他们的研究在多元随机过程的正则性理论方面已取得了许多新的成果。它对几何测量理论也产生了影响。例如,他们的方法产生了一种替代(而不是更精简)的方法,以盖伊大卫的解决方案的著名Vitushkin的猜想,不可求长的一维集有零的分析能力。现代调和分析的中心部分处理“奇异算子”的一种类型或另一种。这种算子在科学领域中是普遍存在的:它们出现在数学物理、概率论、工程学、图像处理等领域。“奇异算子”的表达可以有许多不同的含义,但无论它在给定的上下文中的确切含义如何,这个术语几乎总是反映了这样一个事实,即只有微妙的工具才能应用于对这种算子的研究。它们抵抗“蛮力”方法的探测。特别地,需要采用对某些固有抵消敏感的技术,以便获得对奇异行为的控制。所谓的Calderon-Zygmund理论出现在20世纪50年代初,作为处理该项目中仔细审查的奇异算子类型的第一种方法。PI在两个方向上扩展了这一理论。首先,它们允许运营商享有的自由度增加,从而暴露出一种全新的取消方式。第二,他们采取了相当大胆的行动,抛弃了一个基本的假设,而这个假设在早先被认为是理论中不可或缺的。根据PI的发现,这个假设(技术上称为底层空间的同质性)现在似乎完全是多余的。PI的方法已经产生了几个重要的结果:解决了几个长期存在的问题,简化了对其他重要但困难结果的证明,以及使复杂论证更简短,更清晰的一般特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fedor Nazarov其他文献
On the Maximal Distance Between the Centers of Mass of a Planar Convex Body and Its Boundary
- DOI:
10.1007/s00454-024-00650-0 - 发表时间:
2024-05-06 - 期刊:
- 影响因子:0.600
- 作者:
Fedor Nazarov;Dmitry Ryabogin;Vladyslav Yaskin - 通讯作者:
Vladyslav Yaskin
Fedor Nazarov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fedor Nazarov', 18)}}的其他基金
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900008 - 财政年份:2019
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600239 - 财政年份:2016
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative research: Universality phenomena and several hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象及若干难题
- 批准号:
1265623 - 财政年份:2013
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
- 批准号:
1249196 - 财政年份:2012
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
- 批准号:
0800243 - 财政年份:2008
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Exponential Polynomials, Lacunary Series; Weighted Norm Inequalities
数学科学:指数多项式、空位级数;
- 批准号:
9706775 - 财政年份:1997
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
相似国自然基金
几类测度数据下非线性椭圆和抛物型方程解的Calderón-Zygmund正则性
- 批准号:12001160
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Heisenberg群上p-Poisson型方程的非线性Calderón-Zygmund正则性与点态位势估计
- 批准号:12001333
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于不同函数空间的Calderón-Zygmund理论研究
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
非标准拟线性椭圆和抛物型方程的Calderón-Zygmund估计
- 批准号:11671111
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
强奇异Calderon-Zygmund算子及其相关算子的若干问题
- 批准号:11001266
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
非倍测度空间上Calderón-Zygmund算子理论中的若干问题
- 批准号:10701078
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600065 - 财政年份:2016
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600239 - 财政年份:2016
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600139 - 财政年份:2016
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Conference on Harmonic Analysis; Calderon-Zygmund and Beyond, Dec. 6-8, 2002
谐波分析会议;
- 批准号:
0229157 - 财政年份:2002
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Calderon-Zygmund Operators on Sobolev-Besov Spaces and Boundary Problems with Minimal Smoothness Assumptions
Sobolev-Besov 空间上的 Calderon-Zygmund 算子和具有最小光滑度假设的边界问题
- 批准号:
0139801 - 财政年份:2002
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant














{{item.name}}会员




