Theoretical Studies of the Quantum Hall Effect and Nonlinear Mesoscopic Transport

量子霍尔效应与非线性介观输运的理论研究

基本信息

项目摘要

This award supports theoretical research to study fundamental properties of the integer and fractional quantum Hall effects, and to study mesoscopic transport. The PI has developed an ensemble density functional theory approach to study the fractional quantum Hall effect in large inhomogeneous systems such as quantum dots. The theory enables the inclusion of electron correlations, spin, arbitrary confinements, finite layer thickness, Landau-level mixing and finite temperature. The ensemble density functional theory will be used to study the properties of quantum dots in large magnetic fields. Comparison with addition spectrum, magnetoluminescence, and tunneling experiments will show how measured features result from changes in electron density, correlation state, and spin and edge structures. The ensemble density functional theory will be further developed to include the off-diagonal long-range order of the fractional quantum Hall effect and then applied to quantum dots. The PI also plans to study the edge modes of quantum Hall systems. The focus of this research is on recent experimental data for which a Luttinger liquid description works when it should not. The PI intends to test whether this is a consequence of correlations in the lowest Landau level. The ensemble density functional theory will be used to investigate edge structures under different conditions in dots.Another thrust of the PI's research involves a transport formalism that he developed for steady-state mesoscopic systems which is valid beyond the linear response regime. The formalism will be applied to study specific non-ideal systems, including quantum point contacts. The PI plans to explore model systems comparing his approach to traditional approaches, such as nonequilibrium Green's functions, with the aim of gaining insight into steady-state highly nonequilibrium statistical mechanics including the role of boundary conditions. %%%This award supports theoretical research on quantum dots in high magnetic fields and in transport properties of mesoscopic devices. The research will use state-of-the-art methods that can include materials specific properties and specific geometries to study possible new electronic states that are believed to occur in high magnetic fields. This research is fundamental, but lays groundwork that may be important for developing the electronic device technologies of the 21st century. The proposed work provides educational opportunities for training the next generation of condensed matter theorists.***
该奖项支持理论研究,以研究整数和分数量子霍尔效应的基本性质,并研究介观输运。PI发展了系综密度泛函理论方法来研究量子点等大型非均匀系统中的分数量子霍尔效应。该理论允许包含电子关联、自旋、任意限制、有限层厚度、朗道能级混合和有限温度。系综密度泛函理论将被用于研究量子点在大磁场中的性质。与加成光谱、磁致发光和隧穿实验相比,将显示测量的特征是如何由电子密度、关联态、自旋和边缘结构的变化而产生的。系综密度泛函理论将进一步发展到包含分数量子霍尔效应的非对角长程有序,并将其应用于量子点。PI还计划研究量子霍尔系统的边缘模式。这项研究的重点是最近的实验数据,对于这些数据,勒廷格液体描述在不应该适用的情况下适用。PI打算测试这是否是最低朗道水平相关性的结果。系综密度泛函理论将被用来研究不同条件下点的边缘结构。PI研究的另一个主旨涉及他为稳态介观系统发展的输运公式,该公式在线性响应区域之外有效。形式主义将被应用于研究特定的非理想系统,包括量子点接触。PI计划探索模型系统,将他的方法与非平衡格林函数等传统方法进行比较,目的是深入了解稳态高度非平衡统计力学,包括边界条件的作用。该奖项支持强磁场中量子点的理论研究和介观器件的输运特性。这项研究将使用最先进的方法,包括材料的特定性质和特定的几何形状,以研究可能出现在强磁场中的新电子态。这项研究是基础性的,但也为发展21世纪的电子设备技术奠定了基础。拟议的工作为培养下一代凝聚态理论家提供了教育机会。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Johnson其他文献

Effects of Social Factors and Team Dynamics on Adoption of Collaborative Robot Autonomy
社会因素和团队动力对协作机器人自主性采用的影响
Buy-side barriers to e-business technology in the healthcare sector
Database Interoperability Through State Based Logical Data Independence
通过基于状态的逻辑数据独立性实现数据库互操作性
  • DOI:
    10.1504/ijcat.2003.000316
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Johnson;R. Rosebrugh
  • 通讯作者:
    R. Rosebrugh
FINITE DIFFERENCE TIME DOMAIN MODELING OF CROSS-HOLE ELECTROMAGNETIC SURVEY DATA
跨孔电磁测量数据的有限差分时域建模
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David M. Johnson;A. Tripp;E. Petersen;M. Zhdanov;Michael Johnson;J. Bartley
  • 通讯作者:
    J. Bartley
Lenses, fibrations and universal translations†
镜片、纤维振动和通用翻译†

Michael Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Johnson', 18)}}的其他基金

Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
  • 批准号:
    2307887
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Carbon Fibre Axle (CaFiAx)
碳纤维车轴 (CaFiAx)
  • 批准号:
    EP/X038254/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
REU Site: The National Summer Undergraduate Research Project
REU 网站:国家暑期本科生研究项目
  • 批准号:
    2149582
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Online Undergraduate Resource Fair for the Advancement and Alliance of Marginalized Mathematicians
边缘化数学家进步和联盟在线本科生资源博览会
  • 批准号:
    2230388
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
RAPID: The National Summer Undergraduate Research Project (NSURP), a Virtual Platform for Engaging Underrepresented Minorities in STEM
RAPID:国家暑期本科生研究项目 (NSURP),一个让代表性不足的少数群体参与 STEM 的虚拟平台
  • 批准号:
    2128247
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
The Value of Creative Growth: making growth work for creative enterprise
创意增长的价值:让创意企业的增长发挥作用
  • 批准号:
    AH/S004653/1
  • 财政年份:
    2019
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Fellowship
An integrated systems-level framework for deciphering multidrug resistant epilepsy.
用于破译多重耐药性癫痫的集成系统级框架。
  • 批准号:
    MR/S02638X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
SBIR Phase II: Digitization of Skeletal Evaluations for Developmental and Reproductive Toxicology (DART) Studies.
SBIR 第二阶段:发育和生殖毒理学 (DART) 研究骨骼评估的数字化。
  • 批准号:
    1852639
  • 财政年份:
    2019
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
SBIR Phase I: Digitization of Skeletal Evaluations for Developmental and Reproductive Toxicology (DART) Studies.
SBIR 第一阶段:发育和生殖毒理学 (DART) 研究骨骼评估的数字化。
  • 批准号:
    1745650
  • 财政年份:
    2018
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
I-Corps: Improved Skeletal Visualization Process for Developmental Toxicology and a Novel 3-D Histology Technology
I-Corps:改进的发育毒理学骨骼可视化过程和新颖的 3D 组织学技术
  • 批准号:
    1622801
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant

相似海外基金

Theoretical studies on analog quantum gravity using superconducting Josephson circuits
使用超导约瑟夫森电路模拟量子引力的理论研究
  • 批准号:
    22K03452
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies on quantum transport and manipulation of nanoscale systems
纳米系统量子输运和操控的理论研究
  • 批准号:
    21F21022
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical AMO Studies of Non-Equilibrium and Emergent Many-Body Quantum Physics
非平衡和新兴多体量子物理的理论 AMO 研究
  • 批准号:
    2110250
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Studies of Quantum Systems with Strong Interaction: Geometry and Topology of Quantum States and Flows
强相互作用量子系统的理论研究:量子态和流动的几何和拓扑
  • 批准号:
    1949963
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
  • 批准号:
    450959503
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grants
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies on nonperturbative methods of analyzing quantum many-body dynamics subject to single-atom-resolved measurement and control
单原子分辨测控量子多体动力学非微扰分析方法的理论研究
  • 批准号:
    19K23424
  • 财政年份:
    2019
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Theoretical AMO Studies for Enhanced Understanding and Control of Emergent Quantum Physics
增强对新兴量子物理的理解和控制的理论 AMO 研究
  • 批准号:
    1806357
  • 财政年份:
    2018
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了