Cardinal Characteristics and Related Topics

主要特征和相关主题

基本信息

项目摘要

ABSTRACTRecent work in the theory of cardinal characteristics of the continuum has indicated that one can get more detailed information by working, not with the cardinal characteristics themselves, but with certain relations associated with them. This applies especially in cases where these relations are Borel sets. Part of the planned research concerns the question "Which cardinal characteristics are associated with Borel relations?" For many characteristics the answer is known to be positive; for others it appears to be negative, but it isn't yet known to be negative for any particular characteristic. The investigator hopes to close this gap by proving that certain specific characteristics are not associated with Borel relations. A second aspect of the planned research concerns the sequential composition of relations, which occurs in many theorems and proofs about cardinal characteristics. A priori, sequential compositions cannot be Borel relations, but the investigator intends to extend the theory of Borel relations, using tools from topos theory, so as to cover sequential composition. The research also includes questions relating computability theory to cardinal characteristics. Finally, the investigator also plans to study the use of the groupwise density number (a characteristic introduced some years ago by Laflamme and the investigator) in partition theorems.Cardinal characteristics of the continuum constitute a significant area of contemporary research in set theory. Not only are they of interest for their own sake, but for the last two decades they have played a role in applications of set-theoretic methods to general topology. More recently, there have been applications (including some due to the investigator) to other parts of mathematics, particularly algebra. The investigator and graduate students will extend this theory in several directions. One direction concerns connections with classical descriptive set theory, dealing with relatively easily definable relations involving real numbers. A second direction connects this theory with recursion theory, the study of what is (and what is not) computable in principle. A third direction establishes connections with combinatorial information about infinite sets and structures.
连续统基本特征理论的最新研究表明,人们可以通过研究与它们相关的某些关系而不是基本特征本身来获得更详细的信息。 这尤其适用于这些关系是波莱尔集的情况。部分计划的研究涉及的问题“哪些基本特征与博雷尔关系?对于许多特征,答案是肯定的;对于其他特征,答案似乎是否定的,但对于任何特定的特征,答案还不知道是否定的。 研究人员希望通过证明某些特定特征与Borel关系无关来缩小这一差距。 计划研究的第二个方面涉及关系的顺序组成,这发生在许多定理和证明的基本特征。 先验的,顺序组成不能博雷尔关系,但调查人员打算扩展理论的博雷尔关系,使用工具从拓扑理论,以涵盖顺序组成。 这项研究还包括与可计算性理论的基本特征有关的问题。 最后,调查还计划研究使用groupwise密度数(一个特点介绍了几年前由Laflamme和调查)在partition theorems.Cardinal特征的连续构成一个重要领域的当代研究集理论。不仅是他们的利益为自己的缘故,但在过去的二十年里,他们发挥了作用,应用集理论的方法,一般拓扑结构。 最近,已经有应用程序(包括一些由于调查)的其他部分的数学,特别是代数。 研究人员和研究生将在几个方向上扩展这一理论。 一个方向涉及与经典描述集理论的联系,处理涉及真实的数的相对容易定义的关系。 第二个方向将这个理论与递归理论联系起来,递归理论研究什么是(什么不是)原则上可计算的。 第三个方向建立了与无限集合和结构的组合信息的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Blass其他文献

Partitions and conservativity
  • DOI:
    10.1016/j.topol.2016.08.004
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andreas Blass
  • 通讯作者:
    Andreas Blass
Classifying topoi and the axiom of infinity
  • DOI:
    10.1007/bf01211840
  • 发表时间:
    1989-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Andreas Blass
  • 通讯作者:
    Andreas Blass
Composants of the Stone–Čech remainder of the reals
  • DOI:
    10.1016/j.topol.2015.09.024
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andreas Blass
  • 通讯作者:
    Andreas Blass
On a problem of H. N. Gupta
  • DOI:
    10.1007/bf00150031
  • 发表时间:
    1996-07-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Andreas Blass;Victor Pambuccian
  • 通讯作者:
    Victor Pambuccian
Quasi-Varieties, Congruences, and Generalized Dowling Lattices

Andreas Blass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Blass', 18)}}的其他基金

Logic, Sets, Categories, and Applications
逻辑、集合、类别和应用
  • 批准号:
    0653696
  • 财政年份:
    2007
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
International Methods of Logic in Mathematics Research Group
国际数学逻辑方法研究组
  • 批准号:
    0432603
  • 财政年份:
    2004
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Logic and Set Theory
数学科学:逻辑和集合论主题
  • 批准号:
    9505118
  • 财政年份:
    1995
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Logic and Category Theory
数学科学:逻辑和范畴论主题
  • 批准号:
    9204276
  • 财政年份:
    1992
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Logic and Categories
数学科学:逻辑和范畴
  • 批准号:
    8801988
  • 财政年份:
    1988
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Distanced Graphs: Theory, Applications, and Approximations
数学科学:距离图:理论、应用和近似
  • 批准号:
    8501752
  • 财政年份:
    1985
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences and Computer Research: Computer Science and Mathematical Logic
数学科学与计算机研究:计算机科学与数理逻辑
  • 批准号:
    8101560
  • 财政年份:
    1981
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant
Ultrafilters Over the Natural Numbers
自然数超滤器
  • 批准号:
    7801912
  • 财政年份:
    1978
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Standard Grant

相似海外基金

Rehabilitation based on functional characteristics of motor-related brain regions involved in generating gait rhythm
基于参与产生步态节律的运动相关大脑区域的功能特征的康复
  • 批准号:
    23K16622
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hitting Close to Home: A Multi-Method Investigation of Neighborhood Characteristics and Drinking Motives on Alcohol-Related Health Disparities
切中要害:对社区特征和饮酒动机对酒精相关健康差异的多方法调查
  • 批准号:
    10748631
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
A study of the methodology of waters-related infrastructure/system design to inherit regional characteristics considering the historical background of land/river planning
考虑国土/河流规划历史背景的传承地域特色的涉水基础设施/系统设计方法研究
  • 批准号:
    22KJ0693
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Early Onset Alzheimer's Disease and Related Dementias: A Population-Based Approach to Identify Characteristics and Risk Factors
早发性阿尔茨海默氏病和相关痴呆症:基于人群的特征和危险因素识别方法
  • 批准号:
    10659338
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
Characteristics and Contexts of Bystander Helping for Alcohol-Related Risk among Emerging Adults
旁观者帮助缓解新兴成年人酒精相关风险的特征和背景
  • 批准号:
    10586442
  • 财政年份:
    2023
  • 资助金额:
    $ 10.29万
  • 项目类别:
Examining associations between social network characteristics, obesity-related health behaviors, and weight retention among racially/ethnically diverse postpartum women
检查不同种族/民族产后女性的社交网络特征、肥胖相关健康行为和体重保持之间的关联
  • 批准号:
    10464179
  • 财政年份:
    2022
  • 资助金额:
    $ 10.29万
  • 项目类别:
Characteristics of CO2 fluxes related to plant species and communities in a coastal dune ecosystem
沿海沙丘生态系统中与植物物种和群落相关的CO2通量特征
  • 批准号:
    22K12346
  • 财政年份:
    2022
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examining associations between social network characteristics, obesity-related health behaviors, and weight retention among racially/ethnically diverse postpartum women
检查不同种族/民族产后女性的社交网络特征、肥胖相关健康行为和体重保持之间的关联
  • 批准号:
    10627864
  • 财政年份:
    2022
  • 资助金额:
    $ 10.29万
  • 项目类别:
Communication characteristics related to shared decision-making in the treatment of elderly patients with cancer
老年癌症患者治疗中与共同决策相关的沟通特征
  • 批准号:
    21K10761
  • 财政年份:
    2021
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on short-term risk finance evaluation model considering the storm and flood disaster-related characteristics and financial conditions
考虑风暴洪涝灾害相关特征和财务状况的短期风险财务评价模型研究
  • 批准号:
    21K04591
  • 财政年份:
    2021
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了