Hydrodynamic Stability in viscous, compressible flow

粘性可压缩流中的流体动力学稳定性

基本信息

  • 批准号:
    0070765
  • 负责人:
  • 金额:
    $ 10.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTThe principal investigator proposes several projects concerning multi-dimensional stability of flows in compressible, viscous, and reacting media. These include both shear flows of classical hydrodynamic stability and compressive flows of shock wave and combustion theory, the former exhibiting local symmetry parallel to and the latter normal to the flow. The unifying mathematical theme in these problems is the appearance of multiple length scales corresponding to small-scale transport and large-scale convective effects, with associated ``stiffness'' in the linearized perturbation problem. This leads to interesting, nonstandard issues in spectral and semigroup theory. At the same time, the inclusion of small-scale transport effects is highly desirable from the point of view of physical applications, which often occur at scales where these effects might be expected to be significant.The stability of regular flow patterns is an old and central topic in fluid, gas, and plasma dynamics, deciding which (stable) patterns will typicallybe observed, and which (unstable) are only mathematical and not physicallyobservable solutions. The transition from stability to instabilityis of particular importance, since it usually signals the arisal ofalternative, more complicated flow patterns close to the original(now unstable) one- this is a way to understand complicated flowsby the study of simpler and better-understood ones. Despite a largeand well-known body of theory on this subject, dating back to the late 1800's, there are still many aspects that are poorly understood, particularlyfor compressive, viscous, or reacting flows. Here, we propose to studyseveral of these issues arising in compressible gas and plasma dynamics,and in combustion, applications in which such usually-neglected effectsare of considerable practical importance. Our goal is, by includingthese mathematically problematic terms, to move existing theory fromthe qualitative to the quantitative regime, obtaining new informationof use to practitioners at the same time that we advance the mathematicaltheory.
主要研究人员提出了几个关于可压缩、粘性和反应性介质中流动的多维稳定性的方案。这些理论既包括经典流体动力稳定性的剪切流动,也包括激波压缩流动和燃烧理论,前者表现出平行于流动的局部对称性,而后者表现为垂直于流动的局部对称性。这些问题的统一数学主题是出现与小尺度输送和大尺度对流效应相对应的多个长度尺度,并在线性化扰动问题中与之相关联的“刚性”。这导致了谱和半群理论中有趣的、非标准的问题。同时,从物理应用的角度来看,小尺度输运效应的包含是非常可取的,这通常发生在这些影响可能显著的尺度上。规则流型的稳定性是流体、气体和等离子体动力学中的一个古老而中心的话题,它决定了哪些(稳定的)模式通常会被观察到,而哪些(不稳定的)只是数学上的而不是物理上可观察到的解。从稳定到不稳定的转变是特别重要的,因为它通常标志着接近原始(现在不稳定)的更复杂的替代流型的出现--这是通过研究更简单和更好地理解的流型来理解复杂流动的一种方法。尽管早在1800年末S就有大量的、众所周知的关于这个问题的理论,但仍然有许多方面是鲜为人知的,特别是关于压缩、粘性或反应流动的。在这里,我们建议研究在可压缩气体和等离子体动力学中出现的几个问题,以及在燃烧中的应用,在这些应用中,这种通常被忽略的影响具有相当大的实际意义。我们的目标是,通过纳入这些在数学上有问题的术语,将现有的理论从定性转移到定量制度,在我们推进数学理论的同时,获得对实践者有用的新信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Zumbrun其他文献

Pointwise Estimates and Stability for Dispersive–Diffusive Shock Waves
Stability of viscous detonations for Majda’s model
  • DOI:
    10.1016/j.physd.2013.06.001
  • 发表时间:
    2013-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun
Erratum to: Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation
  • DOI:
    10.1007/s00285-010-0379-z
  • 发表时间:
    2010-11-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Shantia Yarahmadian;Blake Barker;Kevin Zumbrun;Sidney L. Shaw
  • 通讯作者:
    Sidney L. Shaw
Stability of Viscous Weak Detonation Waves for Majda’s Model
  • DOI:
    10.1007/s10884-015-9440-3
  • 发表时间:
    2015-03-13
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun

Kevin Zumbrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Zumbrun', 18)}}的其他基金

Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
  • 批准号:
    2206105
  • 财政年份:
    2022
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Standard Grant
Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems
双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿
  • 批准号:
    2154387
  • 财政年份:
    2022
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
  • 批准号:
    1700279
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
  • 批准号:
    0801745
  • 财政年份:
    2008
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
  • 批准号:
    0505780
  • 财政年份:
    2005
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
  • 批准号:
    0300487
  • 财政年份:
    2003
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Continuing Grant
I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces
I. 粘性守恒定律中波的稳定性。
  • 批准号:
    9706842
  • 财政年份:
    1997
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
  • 批准号:
    9404384
  • 财政年份:
    1994
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107990
  • 财政年份:
    1991
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Fellowship Award

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAR PF: The Stability of Viscous Lavas: Understanding the Driving Processes and Greatest Hazards
EAR PF:粘性熔岩的稳定性:了解驾驶过程和最大危险
  • 批准号:
    1725768
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Fellowship Award
Nonlinear stability of viscous pressure or gravity driven multilayer flows
粘性压力或重力驱动的多层流的非线性稳定性
  • 批准号:
    1943246
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Studentship
Stability analysis of compressible viscous fluids and related problems
可压缩粘性流体的稳定性分析及相关问题
  • 批准号:
    17K14216
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stability and fluidity of a highly viscous solution film during crystal growth
晶体生长过程中高粘性溶液膜的稳定性和流动性
  • 批准号:
    25610110
  • 财政年份:
    2013
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
On a stability of the solutions to the equations of the Compressible flow
可压缩流动方程组解的稳定性
  • 批准号:
    17540167
  • 财政年份:
    2005
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability of nonlinear waves in viscous conservation system together with diffusion phenomena of solutions of damped wave equation
粘性守恒系统中非线性波的稳定性及阻尼波动方程解的扩散现象
  • 批准号:
    16540206
  • 财政年份:
    2004
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of stability ofviscous incompressible flows in several unbounded domains
多个无界域粘性不可压缩流稳定性的数学分析
  • 批准号:
    16540143
  • 财政年份:
    2004
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
  • 批准号:
    15540221
  • 财政年份:
    2003
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions and stability of nonlinear waves for equations of gas motion
气体运动方程解的渐近行为和非线性波的稳定性
  • 批准号:
    14340047
  • 财政年份:
    2002
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of the stability of motions of incompressible fluids and the well-posedness of equations that govern their flow
研究不可压缩流体运动的稳定性和控制其流动的方程的适定性
  • 批准号:
    13440055
  • 财政年份:
    2001
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了