I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces

I. 粘性守恒定律中波的稳定性。

基本信息

  • 批准号:
    9706842
  • 负责人:
  • 金额:
    $ 8.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

9107990 Zumbrun Kevin Zumbrun proposes several projects originating from fluid dynamics. These concern structure and stability of interfacial solutions arising in singular limit problems, specifically SHOCK WAVES and PHASE BOUNDARIES. Stability is a central topic in shock wave theory, connected with such issues as physical admissibility of hyperbolic waves, convergence of difference schemes, and the inviscid limit problem. Zumbrun proposes to study a variety of related questions, from stability of multidimensional viscous shock waves in compressible Navier-Stokes equations to physical significance of oscillatory shock layers in a nonlocal, dispersive sedimentation model. The planned methods of analysis include, among others, pointwise, Green's function techniques which have proved to be useful in other situations of delicate stability, spectral analysis using matrix perturbation theory, and Evans function techniques borrowed from the study of reaction diffusion fronts. Likewise, structure of phase boundaries is a central topic in the study of phase transitions. In the limit of zero transition layer thickness, Cahn-Hilliard models for phase transition reduce to idealized minimal surface problems, and the phase boundaries to minimal surfaces. This link is a rich source of intuition, suggesting new problems in both the geometry and pde setting. Zumbrun proposes several of these for study, most notably the regularity of "Neumann" solutions for the minimal surface problem. The planned method of analysis is by a combination of pde and geometric measure theory techniques. The behavior and structure of interfaces is a topic of basic physical interest, as the organizing principle for a variety of effects seen in nature. For example, soap bubbles are well known to form minimum interfacial energy structures identified by the property that they have minimal surface area. These are also STABLE under small perturbations , by the principle that systems move always toward lower-energy states, in this case back toward the minimal energy configuration. At the same time, the large-scale distribution of matter in the visible universe seems to have a similar structure, with vast voids surrounded by thin layers of galaxies. Apparently, we live on an interface--evidently, also, the minimization of quite different energies can lead to similar structure through a common mathematical mechanism. The examples given above are just two instances of the interfaces known as PHASE BOUNDARIES. Other important interfaces are SHOCK WAVES, or moving boundaries separating substances of very different properties (most usually, a "front" separating air of very different temperature or pressure). Like phase boundaries, these are ubiquitous in nature, from sonic booms to "waves" of concentration in a chemical reaction. Again, it is stability or instability that determines whether a particular shock structure will persist or break up. The mathematics governing stability of interfaces is rather subtle and is by no means completely understood. Indeed, the projects proposed by Zumbrun concern basic theoretical questions that must be answered before we can confidently pursue practical applications such as computer modeling of these phenomena in the variety of settings to which they pertain.
9107990 尊布伦 Kevin Zumbrun提出了几个项目, 从流体动力学。 这些涉及结构和 奇异界面解的稳定性 极限问题,特别是冲击波和相位 边界 稳定性是休克的中心话题 波动理论,与物理等问题有关, 双曲波的容许性,收敛性, 差分格式和无粘极限问题。 Zumbrun建议研究各种相关问题, 从多维粘性冲击波的稳定性 在可压缩Navier-Stokes方程中, 振荡激波层在非局部, 分散沉降模型计划的方法 分析包括逐点分析、绿色分析、 功能技术,已被证明是有用的, 其他情况下的微妙稳定性,光谱分析 利用矩阵微扰理论和Evans函数 从反应扩散研究中借用的技术 战线 同样,相边界的结构是一个 相变研究的中心课题。 在 过渡层厚度为零的极限 相变模型简化到理想化最小 表面问题,和相边界,以最小 表面。 这种联系是直觉的丰富来源, 提出了几何学和PDE中的新问题 设置. Zumbrun提出了其中的几个供研究, 最值得注意的是“诺依曼”解的规律性 最小表面问题。 计划方法 的分析是通过结合偏微分方程和几何 测量理论技术 界面的行为和结构是一个基本的物理兴趣的主题,作为组织原则, 在自然界中看到的各种效应。 比如说, 众所周知, 能源结构的性质,他们确定, 具有最小的表面积。 这些也是稳定的, 根据系统运动的原理, 总是朝向低能态,在这种情况下,回到最小能量构型。 同时对 可见宇宙中物质的大尺度分布 似乎也有类似的结构, 被薄薄的星系层覆盖显然,我们生活在 接口--显然, 不同的能量可以通过一个 常见的数学机制 上面给出的例子只是PHASE接口的两个实例 边界 其他重要的接口是SHOCK WAVES, 或移动的边界, 属性(最常见的是,一个“前”分离空气非常 不同的温度或压力)。 就像相位边界, 这些在自然界中无处不在,从音爆到“波”, 在化学反应中的浓度。 再次是 稳定性或不稳定性,决定了一个特定的冲击结构将继续存在还是破裂。 数学 控制界面的稳定性相当微妙, 还没有完全被理解。 事实上,项目 Zumbrun提出的关于基本理论问题 在我们能够自信地 实际应用,如计算机模拟这些 在他们所处的各种环境中的现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Zumbrun其他文献

Pointwise Estimates and Stability for Dispersive–Diffusive Shock Waves
Stability of viscous detonations for Majda’s model
  • DOI:
    10.1016/j.physd.2013.06.001
  • 发表时间:
    2013-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun
Erratum to: Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation
  • DOI:
    10.1007/s00285-010-0379-z
  • 发表时间:
    2010-11-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Shantia Yarahmadian;Blake Barker;Kevin Zumbrun;Sidney L. Shaw
  • 通讯作者:
    Sidney L. Shaw
Stability of Viscous Weak Detonation Waves for Majda’s Model
  • DOI:
    10.1007/s10884-015-9440-3
  • 发表时间:
    2015-03-13
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun

Kevin Zumbrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Zumbrun', 18)}}的其他基金

Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
  • 批准号:
    2206105
  • 财政年份:
    2022
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems
双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿
  • 批准号:
    2154387
  • 财政年份:
    2022
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
  • 批准号:
    1700279
  • 财政年份:
    2017
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
  • 批准号:
    0801745
  • 财政年份:
    2008
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
  • 批准号:
    0505780
  • 财政年份:
    2005
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
  • 批准号:
    0300487
  • 财政年份:
    2003
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Hydrodynamic Stability in viscous, compressible flow
粘性可压缩流中的流体动力学稳定性
  • 批准号:
    0070765
  • 财政年份:
    2000
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
  • 批准号:
    9404384
  • 财政年份:
    1994
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107990
  • 财政年份:
    1991
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Fellowship Award

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wave Turbulence and Stability of Solitary Waves
波湍流和孤立波的稳定性
  • 批准号:
    2155050
  • 财政年份:
    2022
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
The orientation, shape, and stability of the Golden Gate sand waves
金门沙波的方向、形状和稳定性
  • 批准号:
    2130977
  • 财政年份:
    2022
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    2204788
  • 财政年份:
    2021
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106157
  • 财政年份:
    2021
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106203
  • 财政年份:
    2021
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
  • 批准号:
    21K03315
  • 财政年份:
    2021
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of stability and instability of solitary waves for nonlinear Schroedinger equations
非线性薛定谔方程的孤波稳定性和不稳定性分类
  • 批准号:
    20K14349
  • 财政年份:
    2020
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    1908626
  • 财政年份:
    2019
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Continuing Grant
Stability of two parameter family of solitary waves for nonlinear dispersive equations
非线性色散方程孤立波二参数族的稳定性
  • 批准号:
    18J11090
  • 财政年份:
    2018
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了