Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
基本信息
- 批准号:9404384
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-15 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9404384 Zumbrun This project concerns the study of nonlinear systems of partial differential equations. It consists of two main programs, in parabolic and hyperbolic conservation laws, respectively. The first project involves the study of stability of waves in viscous conservation laws. This project is intimately connected with the central problems of hyperbolic admissibility and the inviscid limit. Current theory, based on energy methods, remains ad hoc and incomplete. A new, pointwise stability analysis is proposed for the treatment of several open problems, including: Lebesgue integrability behavior, rarefactions, multiple wave patterns, undercompressive and "fake Lax" shocks, weak deflagration waves, multi-dimensional fronts in MHD, and nonuniform convergence of shock capturing schemes. The second project involves refined wave tracing methods for hyperbolic conservation laws. Wave tracing gives a great deal of information about approximate solutions obtained by the Glimm random choice scheme. It is proposed that, by refined accounting techniques, more of this information can be extracted in the limiting process. Previously, decay and convergence to N-waves have been established for nonconvex systems. More recently, existence and decay have been shown for periodic solutions of nxn, nonresonant systems, generalizing the work of Glimm and Lax for 2x2 systems. It is planned to study periodic solutions of nonconvex and of resonant systems, and, ultimately, continuous dependence on initial data. This project deals with equations of applied mathematics. In particular, the equations of continuum mechanics will be study. Emphasis will be placed on the study of stability and convergence of viscous shock and rarefaction waves. The analysis can be applied to real world problems encountered, for example, in gas dynamics. ***
小行星9404384 这个项目是关于非线性偏微分方程组的研究。它包括两个主要的程序,分别在抛物线和双曲守恒律。第一个项目涉及粘性守恒律中波动稳定性的研究。这个项目是密切相关的双曲容许性和无粘极限的中心问题。目前的理论,基于能源的方法,仍然是特设和不完整的。一个新的,逐点稳定性分析提出了几个开放的问题,包括治疗:勒贝格可积性行为,稀疏,多波图案,欠压缩和“假拉克斯”冲击,弱爆燃波,多维锋MHD,和非一致收敛的冲击捕获计划。第二个项目涉及双曲守恒律的精细波追踪方法。波追踪给出了大量的信息近似解所获得的格里姆随机选择计划。有人建议,通过完善的会计技术,可以提取更多的这种信息的限制过程。以前,衰减和收敛到N-波已经建立了非凸系统。最近,nxn非共振系统的周期解的存在性和衰减性已经被证明,推广了Glimm和Lax对2x2系统的工作。计划研究非凸和共振系统的周期解,并最终研究对初始数据的连续依赖性。 这个项目是关于应用数学方程的.特别是连续介质力学方程的研究。重点将放在研究粘性激波和稀疏波的稳定性和收敛性。该分析可以应用于真实的世界遇到的问题,例如,在气体动力学。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Zumbrun其他文献
Pointwise Estimates and Stability for Dispersive–Diffusive Shock Waves
- DOI:
10.1007/s002050000110 - 发表时间:
2000-11-01 - 期刊:
- 影响因子:2.400
- 作者:
Peter Howard;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Stability of viscous detonations for Majda’s model
- DOI:
10.1016/j.physd.2013.06.001 - 发表时间:
2013-09-15 - 期刊:
- 影响因子:
- 作者:
Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Erratum to: Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions
- DOI:
10.1007/s00205-010-0291-0 - 发表时间:
2010-01-26 - 期刊:
- 影响因子:2.400
- 作者:
Myunghyun Oh;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation
- DOI:
10.1007/s00285-010-0379-z - 发表时间:
2010-11-13 - 期刊:
- 影响因子:2.300
- 作者:
Shantia Yarahmadian;Blake Barker;Kevin Zumbrun;Sidney L. Shaw - 通讯作者:
Sidney L. Shaw
Stability of Viscous Weak Detonation Waves for Majda’s Model
- DOI:
10.1007/s10884-015-9440-3 - 发表时间:
2015-03-13 - 期刊:
- 影响因子:1.300
- 作者:
Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Kevin Zumbrun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Zumbrun', 18)}}的其他基金
Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
- 批准号:
2206105 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems
双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿
- 批准号:
2154387 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
- 批准号:
1700279 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
- 批准号:
0801745 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
- 批准号:
0505780 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
- 批准号:
0300487 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Hydrodynamic Stability in viscous, compressible flow
粘性可压缩流中的流体动力学稳定性
- 批准号:
0070765 - 财政年份:2000
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces
I. 粘性守恒定律中波的稳定性。
- 批准号:
9706842 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107990 - 财政年份:1991
- 资助金额:
$ 4万 - 项目类别:
Fellowship Award
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Standard Grant














{{item.name}}会员




