Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems

双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿

基本信息

  • 批准号:
    2154387
  • 负责人:
  • 金额:
    $ 23.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Roll waves are large-scale periodic pulses that form in a rapidly moving inclined flow, such as on a canal or dam spillway. As potentially destructive phenomena, it is important from a hydroengineering standpoint to understand the conditions and the characteristics for their occurrence. This translates into questions on the stability, or persistence under small disturbances, of such waves. Until recently such questions were out of reach of existing mathematical tools. The PI and collaborators have developed a substantial toolkit for this study, which will be brought to bear on practical applications. A second, equally challenging topic, concerns the study of many-particle systems via Boltzmann's equation, again using recently developed technical tools. Finally, the study of modern biomorphology models promises to give new insights into initiation and emergent dynamics phases of vasculogenesis and related biological processes. The project will also provide research training opportunities for graduate students. The PI will investigate a selection of key open questions on relaxation, kinetic equations, and biomechanical pattern formation. Of particularly interest are open questions on nonlinear time-asymptotic stability of discontinuous inviscid periodic waves and multi-dimensional hydraulic shocks, invariant manifolds for steady Boltzmann’s equation, and bifurcation and stability of Turing patterns in biomorphology models possessing conservation laws. The objective of the project is the development of new theoretical approaches to unresolved questions of practical interest in shallow-water flow, gas dynamics, and morphogenesis. Methods include a blend of finite- and infinite-dimensional dynamical systems tools with specialized techniques coming from shocks and hyperbolic conservation laws: in particular, Kreiss symmetrizer and pseudodifferential techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
滚波是在快速移动的倾斜流中形成的大尺度周期性脉冲,例如在运河或大坝溢洪道上。 作为潜在的破坏性现象,从水利工程的角度来看,了解其发生的条件和特征是很重要的。 这就转化为关于这种波的稳定性或在小扰动下的持续性的问题。直到最近,这样的问题还无法用现有的数学工具来解决。 PI和合作者为这项研究开发了一个实质性的工具包,将用于实际应用。第二个同样具有挑战性的主题是通过玻尔兹曼方程研究多粒子系统,也是使用最近开发的技术工具。 最后,现代生物形态学模型的研究有望为血管发生和相关生物过程的启动和涌现动力学阶段提供新的见解。该项目还将为研究生提供研究培训机会。PI将调查关于放松、动力学方程和生物力学模式形成的关键开放性问题。特别令人感兴趣的是关于不连续无粘周期波和多维水力冲击的非线性时间渐进稳定性、稳态玻尔兹曼方程的不变流形以及具有守恒律的生物形态模型中图灵图案的分叉和稳定性的悬而未决的问题。 该项目的目标是开发新的理论方法,以解决浅水流动,气体动力学和形态发生中具有实际意义的未解决问题。 方法包括有限维和无限维动力系统工具与来自冲击和双曲守恒定律的专业技术的混合:特别是Kreiss对称化器和伪微分技术。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Zumbrun其他文献

Pointwise Estimates and Stability for Dispersive–Diffusive Shock Waves
Stability of viscous detonations for Majda’s model
  • DOI:
    10.1016/j.physd.2013.06.001
  • 发表时间:
    2013-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun
Erratum to: Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation
  • DOI:
    10.1007/s00285-010-0379-z
  • 发表时间:
    2010-11-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Shantia Yarahmadian;Blake Barker;Kevin Zumbrun;Sidney L. Shaw
  • 通讯作者:
    Sidney L. Shaw
Stability of Viscous Weak Detonation Waves for Majda’s Model
  • DOI:
    10.1007/s10884-015-9440-3
  • 发表时间:
    2015-03-13
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun

Kevin Zumbrun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Zumbrun', 18)}}的其他基金

Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
  • 批准号:
    2206105
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
  • 批准号:
    1700279
  • 财政年份:
    2017
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
  • 批准号:
    0801745
  • 财政年份:
    2008
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
  • 批准号:
    0505780
  • 财政年份:
    2005
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
  • 批准号:
    0300487
  • 财政年份:
    2003
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Hydrodynamic Stability in viscous, compressible flow
粘性可压缩流中的流体动力学稳定性
  • 批准号:
    0070765
  • 财政年份:
    2000
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces
I. 粘性守恒定律中波的稳定性。
  • 批准号:
    9706842
  • 财政年份:
    1997
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
  • 批准号:
    9404384
  • 财政年份:
    1994
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107990
  • 财政年份:
    1991
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Fellowship Award

相似海外基金

Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
  • 批准号:
    10583283
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
  • 批准号:
    10562265
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Structural dynamics of sphingosine-1-phosphate transporters as key therapeutic targets for immune system modulation and cancer
1-磷酸鞘氨醇转运蛋白作为免疫系统调节和癌症关键治疗靶点的结构动力学
  • 批准号:
    10586751
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Synaptic Organization and Modulation of Kainate Receptors: Investigating the Structure, Dynamics, and Function in the Context of Trans-Synaptic Junctions
红藻氨酸受体的突触组织和调节:研究跨突触连接的结构、动力学和功能
  • 批准号:
    10754481
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Diurnal Variation in Acetylcholine Modulation of Dopamine Dynamics Following Chronic Cocaine Intake
慢性可卡因摄入后乙酰胆碱对多巴胺动力学调节的昼夜变化
  • 批准号:
    10679573
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Elucidating Molecular Mechanisms of Gating Regulation and Subunit Modulation of N-glycosylation on Ion Channels by Using Molecular Dynamics Simulations
利用分子动力学模拟阐明离子通道上 N-糖基化的门控调节和亚基调节的分子机制
  • 批准号:
    10836834
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Modulation of Frontoparietal Dynamics in Adolescent Working Memory Deficits
青少年工作记忆缺陷中额顶叶动态的调节
  • 批准号:
    10425474
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
Modulation of Membrane Protein Dynamics by Glycan-Galectin Interaction
聚糖-半乳糖凝集素相互作用调节膜蛋白动力学
  • 批准号:
    22K19112
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Modulation of gait dynamics post-stroke
中风后步态动力学的调节
  • 批准号:
    10677559
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
Fjord Dynamics and Modulation of Ice/Ocean Exchange
峡湾动力学和冰/海洋交换的调节
  • 批准号:
    NE/W00531X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了