Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
基本信息
- 批准号:2206105
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydraulic shocks and roll waves can drastically affect inclined shallow-water flow, which is particularly important to canal and dam spillway design. The Principal Investigator (PI) will use theoretical and computational methods to study the effects of rotational and multi-dimensions on the existence and stability of flow patterns in inclined shallow water flow. The results are expected be of interest to hydraulic engineers seeking to prevent damage from anomalous large waves, either by preventing their appearance, or by building remediating structures to a size and strength called for by the existing and developing theory. The PI will study a selection of novel problems on stability and behavior of inclined shallow water flow. The objective of the project is the incorporation of previously unaccounted multi-dimensional and rotational (vorticity) effects in the study of stability and behavior of roll waves and hydraulic shocks in a hydrodynamic engineering setting, to obtain comprehensive stability diagrams across all parameters. The project involves applicable and nonstandard mathematical issues addressing challenging problems from physical applications. For example, successful treatment of multidimensional shock and roll waves would advance general theory, while providing a solid framework on roll wave behavior in shallow water flow/hydraulic engineering. The research methods that will be used in the project include a blend of numerical, formal asymptotic, and dynamical systems/turning point tools with specialized techniques coming from detonation theory and hyperbolic conservation laws. The validation of simple stability criteria for roll waves in shallow water flow and the introduction of new asymptotic and numerical methods are of wider application in both hydraulic engineering and the theory of hyperbolic shock and boundary value problems. Likewise, the computation of all-parameters stability diagrams for commonly occurring flows is of basic foundational scientific interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水力冲击和横滚波对倾斜浅水流场有很大的影响,这对渠道和大坝溢洪道的设计尤为重要。 首席研究员(PI)将使用理论和计算方法来研究旋转和多维对倾斜浅水流中流型的存在和稳定性的影响。 这些结果预计会引起水利工程师的兴趣,他们希望通过防止异常大浪的出现,或者通过建立现有和发展中理论所要求的尺寸和强度的补救结构来防止异常大浪造成的损害。PI将研究一系列关于倾斜浅水流稳定性和行为的新问题。 该项目的目标是将以前未考虑的多维和旋转(涡)效应纳入水动力工程环境中滚波和液压冲击的稳定性和行为研究中,以获得所有参数的综合稳定性图。该项目涉及适用和非标准的数学问题,解决物理应用中的挑战性问题。例如,多维冲击波和滚波的成功处理将推进一般理论,同时提供浅水流动/水利工程中滚波行为的坚实框架。 将在该项目中使用的研究方法包括混合数值,形式渐近和动力系统/转折点工具与来自爆轰理论和双曲守恒律的专业技术。 浅水中滚波稳定性简单判据的验证以及新的渐近方法和数值方法的引入在水利工程、双曲激波理论和边值问题中具有广泛的应用。同样,计算常见流动的所有参数稳定性图也具有基本的基础科学价值。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Zumbrun其他文献
Pointwise Estimates and Stability for Dispersive–Diffusive Shock Waves
- DOI:
10.1007/s002050000110 - 发表时间:
2000-11-01 - 期刊:
- 影响因子:2.400
- 作者:
Peter Howard;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Stability of viscous detonations for Majda’s model
- DOI:
10.1016/j.physd.2013.06.001 - 发表时间:
2013-09-15 - 期刊:
- 影响因子:
- 作者:
Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Erratum to: Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions
- DOI:
10.1007/s00205-010-0291-0 - 发表时间:
2010-01-26 - 期刊:
- 影响因子:2.400
- 作者:
Myunghyun Oh;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation
- DOI:
10.1007/s00285-010-0379-z - 发表时间:
2010-11-13 - 期刊:
- 影响因子:2.300
- 作者:
Shantia Yarahmadian;Blake Barker;Kevin Zumbrun;Sidney L. Shaw - 通讯作者:
Sidney L. Shaw
Stability of Viscous Weak Detonation Waves for Majda’s Model
- DOI:
10.1007/s10884-015-9440-3 - 发表时间:
2015-03-13 - 期刊:
- 影响因子:1.300
- 作者:
Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Kevin Zumbrun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Zumbrun', 18)}}的其他基金
Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems
双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿
- 批准号:
2154387 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
- 批准号:
1700279 - 财政年份:2017
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
- 批准号:
0801745 - 财政年份:2008
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
- 批准号:
0505780 - 财政年份:2005
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
- 批准号:
0300487 - 财政年份:2003
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Hydrodynamic Stability in viscous, compressible flow
粘性可压缩流中的流体动力学稳定性
- 批准号:
0070765 - 财政年份:2000
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces
I. 粘性守恒定律中波的稳定性。
- 批准号:
9706842 - 财政年份:1997
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
- 批准号:
9404384 - 财政年份:1994
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107990 - 财政年份:1991
- 资助金额:
$ 23.57万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Studentship
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Fellowship
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Projects