Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
基本信息
- 批准号:0070772
- 负责人:
- 金额:$ 12.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2002-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Macdonald polynomials, diagonal harmonics, and the geometryof Hilbert schemes.Professor Haiman is working to complete the proof of a series of conjectures involving Macdonald polynomials, the so-called "n-factorial" conjecture, and the character formula for diagonal harmonics. The methods involve a detailed algebraic geometrical study of the Hilbert scheme of points in the plane and related algebraic varieties. In earlier work Professor Haiman showed that certain hypotheses on the singularities and sheaf cohomology of these varieties would imply the desired algebraic results (and with Garsia, showed that the latter imply related combinatorial results). The current work is to establish these geometric hypotheses.Macdonald polynomials are a new family of symmetric functions. Their discovery by Macdonald in 1988 was a surprising development in the theory of symmetric functions, which is a fundamental and classical part of mathematics with roots in the work of Euler, Jacobi, and Cauchy over a century ago. Macdonald polynomials have since been found to have important applications in a wide range of areas including geometry, representation theory, and even theoretical physics. At the time of their discovery, Macdonald conjectured that certain coefficients associated with his polynomials should be positive integers, the proof of which remains the most important unsolved problem in this area. The successful completion of this project will solve this problem, proving the "Macdonald positivity conjecture," along with a related representation-theoretic conjecture of Garsia and the investigator known as the "n-factorial" conjecture, some related combinatorial conjectures, and strong new geometric properties of Hilbert schemes, which are likely to have further applications in geometry and representation theory.
摘要:Macdonald多项式、对角调和函数和Hilbert格式的几何。Haiman教授正在完成一系列涉及Macdonald多项式、所谓的“n阶乘”猜想和对角调和函数的特征公式的证明。 该方法涉及一个详细的代数几何研究的希尔伯特计划的点在平面和相关的代数品种。 在早期的工作教授海曼表明,某些假设的奇异性和层上同调这些品种将意味着所需的代数结果(并与加西亚,表明后者意味着相关的组合结果)。 Macdonald多项式是一类新的对称函数族。 他们的发现麦克唐纳在1988年是一个令人惊讶的发展理论的对称函数,这是一个基本的和经典的一部分数学的根源工作欧拉,雅可比,柯西在世纪前。 麦克唐纳多项式已经被发现在广泛的领域有重要的应用,包括几何,表示论,甚至理论物理。 在他们发现的时候,麦克唐纳声称与他的多项式相关的某些系数应该是正整数,这一证明仍然是这一领域最重要的未解决的问题。 该项目的成功完成将解决这个问题,证明“麦克唐纳正性猜想”,沿着Garsia和研究人员的相关表示论猜想,称为“n阶乘”猜想,一些相关的组合结构,以及希尔伯特方案的强大的新几何性质,这些可能在几何和表示论中有进一步的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Haiman其他文献
Arguesian lattices which are not type-1
- DOI:
10.1007/bf01190416 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:0.600
- 作者:
Mark Haiman - 通讯作者:
Mark Haiman
Two notes on the Arguesian identity
- DOI:
10.1007/bf01188053 - 发表时间:
1985-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Mark Haiman - 通讯作者:
Mark Haiman
Mark Haiman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Haiman', 18)}}的其他基金
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
- 批准号:
0943745 - 财政年份:2010
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Combinatorics of Special Functions in Geometry and Representation Theory
几何与表示论中特殊函数的组合
- 批准号:
0801262 - 财政年份:2008
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Special Meeting: Recent Advances in Combinatorics, CRM Thematic Semester 2007
特别会议:组合学的最新进展,2007 年 CRM 主题学期
- 批准号:
0603479 - 财政年份:2007
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
- 批准号:
0354321 - 财政年份:2004
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Combinatorial aspects of geometry and representation theory
几何与表示论的组合方面
- 批准号:
0301072 - 财政年份:2003
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
- 批准号:
0296203 - 财政年份:2001
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Combinatorics and Algebraic Geometry -- Macdonald Polynomials, Hilbert Schemes, and Related Topics
组合学和代数几何——麦克唐纳多项式、希尔伯特方案和相关主题
- 批准号:
9701218 - 财政年份:1997
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Joint Seminar on AlgebraicCombinatorics in Honour of Adriano M. Garsia
美意合作研究:纪念阿德里亚诺·M·加西亚代数组合学联合研讨会
- 批准号:
9401875 - 财政年份:1994
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra and Geometry; Macdonald Polynomials, Diagonal Harmonics, and the Hilbert Scheme
数学科学:代数和几何的组合方法;
- 批准号:
9400934 - 财政年份:1994
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra: Coxeter Groups, Hecke Algebras, Young Tableaux, and Symmetric Functions
数学科学:代数组合方法:Coxeter 群、Hecke 代数、Young Tableaux 和对称函数
- 批准号:
9119355 - 财政年份:1992
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
相似海外基金
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
- 批准号:
EP/X032051/1 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Research Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
- 批准号:
2246624 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Practical operational use of higher order polynomials in reducing the linearity errors of nanopositioning stages
高阶多项式在减少纳米定位台线性误差方面的实际操作使用
- 批准号:
10039395 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Collaborative R&D
Characteristic polynomials for symmetric forms
对称形式的特征多项式
- 批准号:
EP/W019620/1 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Research Grant
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
- 批准号:
RGPIN-2019-04441 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Discovery Grants Program - Individual
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
- 批准号:
575062-2022 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
University Undergraduate Student Research Awards