EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
基本信息
- 批准号:0354321
- 负责人:
- 金额:$ 149.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for RTG award DMS-0354321 of HaimanThe purpose of this project is to bring together U.C. Berkeley'sresearch faculty in the areas of Representation Theory, Geometry andCombinatorics, along with a group of postdoctoral associates andgraduate students, in order to promote collaborative research and thetraining of young people for future work. The three branches ofmathematics addressed by this project are connected in profoundlyimportant ways. In every one of these areas, many of the mostexciting current research advances involve the interconnectionsbetween them, so that serious study of any of them requires strongknowledge of the other two. A central goal of the project is toprovide an environment in which postdocs and graduate students aregiven the time, opportunity and collaborative atmosphere needed tomaster a full range of techniques in all three areas. The projectwill establish two new seminars, to meet throughout the academic year,one concentrating on instruction in specialized topics not usuallyfound in standard courses, and the other a joint seminar on currentresearch. The project will also hold an annual week-long intensivesummer workshop, featuring series of 5--6 lectures on advanced topicsby distinguished outside visitors and U.C. faculty members, intendedfor a graduate student to postdoctoral level audience. We willwelcome and facilitate participation by young researchers from otherinstitutions.Exciting recent mathematical developments lie at the intersection ofrepresentation theory, geometry and combinatorics, with much more tobe done in the future. The faculty members forming the core of theresearch group (Profs. Haiman, Reshetikhin, Borcherds, Frenkel,Givental, Knutson, Serganova and Wolf) have extensive overlappinginterests, each using techniques from all three areas in his or herown work. Specific research interests common to multiple members ofthe group include topics in quantum field theory; representationtheory of infinite-dimensional Lie algebras; quantum groups andcanonical bases; Gromov-Witten invariants and mirror symmetry; andgeometry and combinatorics of Schubert varieties and flag manifolds.The activities of the project are designed to foster researchcollaboration and above all to equip young mathematicians in trainingwith the broad range of intellectual tools needed to reach thefrontiers of research on such topics such as those mentioned.
这个项目的目的是将加州大学伯克利分校在表示理论、几何和组合学领域的研究人员,以及一批博士后和研究生聚集在一起,以促进合作研究,并为未来的工作培养年轻人。这个项目所涉及的三个数学分支在重要的方面有着深刻的联系。在这些领域中的每一个领域,当前许多最令人兴奋的研究进展都涉及到它们之间的相互联系,因此,对其中任何一个领域的认真研究都需要对其他两个领域有深入的了解。该项目的一个中心目标是为博士后和研究生提供一个环境,让他们有时间、有机会和协作的氛围来掌握这三个领域的全部技术。该项目将建立两个新的研讨会,在整个学年举行,一个集中在标准课程中通常没有的专业主题的教学上,另一个是关于当前研究的联合研讨会。该项目还将每年举办为期一周的暑期专题研讨会,由杰出的外部访客和加州大学教职员工就高级主题进行5- 6次系列讲座,面向研究生至博士后水平的听众。我们欢迎并鼓励其他机构的青年研究人员参与。最近令人兴奋的数学发展是在表示理论、几何和组合学的交叉领域,未来还有更多的工作要做。组成研究小组核心的教员(教授)。Haiman, Reshetikhin, Borcherds, Frenkel,Givental, Knutson, Serganova和Wolf)有广泛的重叠兴趣,每个人在他或她自己的工作中都使用了这三个领域的技术。小组成员共同的特定研究兴趣包括量子场论主题;无限维李代数的表示理论;量子群与正则基;Gromov-Witten不变量与镜像对称性舒伯特变体和面形的几何和组合学。该项目的活动旨在促进研究合作,最重要的是为年轻数学家提供广泛的智力工具,以达到上述主题的研究前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Haiman其他文献
Arguesian lattices which are not type-1
- DOI:
10.1007/bf01190416 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:0.600
- 作者:
Mark Haiman - 通讯作者:
Mark Haiman
Two notes on the Arguesian identity
- DOI:
10.1007/bf01188053 - 发表时间:
1985-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Mark Haiman - 通讯作者:
Mark Haiman
Mark Haiman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Haiman', 18)}}的其他基金
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
- 批准号:
0943745 - 财政年份:2010
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Combinatorics of Special Functions in Geometry and Representation Theory
几何与表示论中特殊函数的组合
- 批准号:
0801262 - 财政年份:2008
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Special Meeting: Recent Advances in Combinatorics, CRM Thematic Semester 2007
特别会议:组合学的最新进展,2007 年 CRM 主题学期
- 批准号:
0603479 - 财政年份:2007
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
Combinatorial aspects of geometry and representation theory
几何与表示论的组合方面
- 批准号:
0301072 - 财政年份:2003
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
- 批准号:
0296203 - 财政年份:2001
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
- 批准号:
0070772 - 财政年份:2000
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Combinatorics and Algebraic Geometry -- Macdonald Polynomials, Hilbert Schemes, and Related Topics
组合学和代数几何——麦克唐纳多项式、希尔伯特方案和相关主题
- 批准号:
9701218 - 财政年份:1997
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Joint Seminar on AlgebraicCombinatorics in Honour of Adriano M. Garsia
美意合作研究:纪念阿德里亚诺·M·加西亚代数组合学联合研讨会
- 批准号:
9401875 - 财政年份:1994
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra and Geometry; Macdonald Polynomials, Diagonal Harmonics, and the Hilbert Scheme
数学科学:代数和几何的组合方法;
- 批准号:
9400934 - 财政年份:1994
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra: Coxeter Groups, Hecke Algebras, Young Tableaux, and Symmetric Functions
数学科学:代数组合方法:Coxeter 群、Hecke 代数、Young Tableaux 和对称函数
- 批准号:
9119355 - 财政年份:1992
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044150 - 财政年份:2011
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044604 - 财政年份:2011
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
1045119 - 财政年份:2011
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044448 - 财政年份:2011
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
- 批准号:
0943745 - 财政年份:2010
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries
EMSW21-RTG:发展美国在代数几何及其边界方面的研究领导地位
- 批准号:
0943832 - 财政年份:2010
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
EMSW21-RTG: Research Training Group in Logic and Dynamics
EMSW21-RTG:逻辑和动力学研究培训组
- 批准号:
0943870 - 财政年份:2010
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
EMSW21-RTG: Research Training Group on Inverse Problems and Partial Differential Equations
EMSW21-RTG:反问题和偏微分方程研究培训组
- 批准号:
0838212 - 财政年份:2009
- 资助金额:
$ 149.95万 - 项目类别:
Standard Grant
EMSW21-RTG: Training, Mentoring & Research in the Mathematics of Stochastic Analysis and Applications
EMSW21-RTG:培训、指导
- 批准号:
0739195 - 财政年份:2008
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739346 - 财政年份:2008
- 资助金额:
$ 149.95万 - 项目类别:
Continuing Grant