Mathematical Sciences: Combinatorial Methods in Algebra and Geometry; Macdonald Polynomials, Diagonal Harmonics, and the Hilbert Scheme

数学科学:代数和几何的组合方法;

基本信息

  • 批准号:
    9400934
  • 负责人:
  • 金额:
    $ 6.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-01 至 1997-06-30
  • 项目状态:
    已结题

项目摘要

9400934 Haiman This project involves research into modules associated with the Macdonald polynomials and the module of diagonal harmonics. The work promises to establish new relationships between these objects and other parts of algebraic combinatorics and algebraic geometry. Preliminary work has already established the framework for the connections and has produced important new algebraic identities. This research falls in the broad category of combinatorics, which is one of the most active fields in today's mathematics. At its roots, combinatorics is the study of systematic counting. Counting can be incredibly difficult when the objects are difficult to list, and combinatorists look for general methods for overcoming these difficulties. Today's combinatorics makes use of a wide variety of the most advanced and modern mathematical techniques. Although its roots go back several centuries, the field has had an explosive development in the past few decades. This growth comes from its importance in communications and information technology and from the success of modern techniques to problems of counting.
9400934海曼这个项目涉及到麦克唐纳多项式相关模块和对角谐波模块的研究。这项工作有望在这些对象与代数组合学和代数几何的其他部分之间建立新的关系。初步工作已经建立了连接的框架,并产生了重要的新代数恒等式。这项研究属于组合学的广泛范畴,这是当今数学中最活跃的领域之一。从根本上说,组合学是对系统计数的研究。当对象难以列出时,计数可能会非常困难,组合学家会寻找克服这些困难的通用方法。今天的组合学利用了各种最先进和现代的数学技术。虽然它的根源可以追溯到几个世纪以前,但在过去的几十年里,这个领域有了爆炸性的发展。这种增长来自于它在通信和信息技术中的重要性,以及现代技术在计数问题上的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Haiman其他文献

Arguesian lattices which are not type-1
  • DOI:
    10.1007/bf01190416
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Mark Haiman
  • 通讯作者:
    Mark Haiman
Two notes on the Arguesian identity
  • DOI:
    10.1007/bf01188053
  • 发表时间:
    1985-06-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Mark Haiman
  • 通讯作者:
    Mark Haiman

Mark Haiman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Haiman', 18)}}的其他基金

EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
  • 批准号:
    0943745
  • 财政年份:
    2010
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Combinatorics of Special Functions in Geometry and Representation Theory
几何与表示论中特殊函数的组合
  • 批准号:
    0801262
  • 财政年份:
    2008
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Special Meeting: Recent Advances in Combinatorics, CRM Thematic Semester 2007
特别会议:组合学的最新进展,2007 年 CRM 主题学期
  • 批准号:
    0603479
  • 财政年份:
    2007
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
  • 批准号:
    0354321
  • 财政年份:
    2004
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Combinatorial aspects of geometry and representation theory
几何与表示论的组合方面
  • 批准号:
    0301072
  • 财政年份:
    2003
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
  • 批准号:
    0296203
  • 财政年份:
    2001
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
  • 批准号:
    0070772
  • 财政年份:
    2000
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Combinatorics and Algebraic Geometry -- Macdonald Polynomials, Hilbert Schemes, and Related Topics
组合学和代数几何——麦克唐纳多项式、希尔伯特方案和相关主题
  • 批准号:
    9701218
  • 财政年份:
    1997
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
U.S.-Italy Cooperative Research: Joint Seminar on AlgebraicCombinatorics in Honour of Adriano M. Garsia
美意合作研究:纪念阿德里亚诺·M·加西亚代数组合学联合研讨会
  • 批准号:
    9401875
  • 财政年份:
    1994
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra: Coxeter Groups, Hecke Algebras, Young Tableaux, and Symmetric Functions
数学科学:代数组合方法:Coxeter 群、Hecke 代数、Young Tableaux 和对称函数
  • 批准号:
    9119355
  • 财政年份:
    1992
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences: Combinatorial Zeta and L-functions
NSF/CBMS 数学科学区域会议:组合 Zeta 和 L 函数
  • 批准号:
    1341413
  • 财政年份:
    2014
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Probabilistic and Combinatorial Approach in Analysis"
NSF/CBMS 数学科学区域会议 - “分析中的概率和组合方法”
  • 批准号:
    0532494
  • 财政年份:
    2006
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Interdisciplinary Grants in the Mathematical Sciences: Combinatorial Methods in Manufacturing
数学科学的跨学科资助:制造中的组合方法
  • 批准号:
    0308827
  • 财政年份:
    2003
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Combinatorial Optimization:Packing and Covering" 5/18/99- 5/22/99
NSF/CBMS 数学科学区域会议“组合优化:打包和覆盖” 5/18/99- 5/22/99
  • 批准号:
    9812849
  • 财政年份:
    1998
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
  • 批准号:
    9625511
  • 财政年份:
    1996
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Analytical and Combinatorial Aspects of Subfactors
数学科学:子因子的分析和组合方面
  • 批准号:
    9531566
  • 财政年份:
    1996
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Ergodic Theory and Applications in Combinatorial Number Theory
数学科学:遍历理论及其在组合数论中的应用
  • 批准号:
    9622974
  • 财政年份:
    1996
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Combinatorial and Measure-Theoretic Structure of Dynamical Systems
数学科学:动力系统的组合和测度理论结构
  • 批准号:
    9626303
  • 财政年份:
    1996
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Behavior of Large Combinatorial Systems
数学科学:大型组合系统的行为
  • 批准号:
    9622966
  • 财政年份:
    1996
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Ergodic Theory, Differential Dynamicsand Combinatorial Number Theory
数学科学:遍历理论、微分动力学和组合数论
  • 批准号:
    9501383
  • 财政年份:
    1995
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了