Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes

麦克唐纳多项式、对角调和和希尔伯特方案的几何

基本信息

  • 批准号:
    0296203
  • 负责人:
  • 金额:
    $ 12.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Haiman其他文献

Arguesian lattices which are not type-1
  • DOI:
    10.1007/bf01190416
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Mark Haiman
  • 通讯作者:
    Mark Haiman
Two notes on the Arguesian identity
  • DOI:
    10.1007/bf01188053
  • 发表时间:
    1985-06-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Mark Haiman
  • 通讯作者:
    Mark Haiman

Mark Haiman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Haiman', 18)}}的其他基金

EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
  • 批准号:
    0943745
  • 财政年份:
    2010
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Combinatorics of Special Functions in Geometry and Representation Theory
几何与表示论中特殊函数的组合
  • 批准号:
    0801262
  • 财政年份:
    2008
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Special Meeting: Recent Advances in Combinatorics, CRM Thematic Semester 2007
特别会议:组合学的最新进展,2007 年 CRM 主题学期
  • 批准号:
    0603479
  • 财政年份:
    2007
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
  • 批准号:
    0354321
  • 财政年份:
    2004
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Combinatorial aspects of geometry and representation theory
几何与表示论的组合方面
  • 批准号:
    0301072
  • 财政年份:
    2003
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Macdonald Polynomials, Diagonal Harmonics, and the Geometry of Hilbert Schemes
麦克唐纳多项式、对角调和和希尔伯特方案的几何
  • 批准号:
    0070772
  • 财政年份:
    2000
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Continuing Grant
Combinatorics and Algebraic Geometry -- Macdonald Polynomials, Hilbert Schemes, and Related Topics
组合学和代数几何——麦克唐纳多项式、希尔伯特方案和相关主题
  • 批准号:
    9701218
  • 财政年份:
    1997
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
U.S.-Italy Cooperative Research: Joint Seminar on AlgebraicCombinatorics in Honour of Adriano M. Garsia
美意合作研究:纪念阿德里亚诺·M·加西亚代数组合学联合研讨会
  • 批准号:
    9401875
  • 财政年份:
    1994
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra and Geometry; Macdonald Polynomials, Diagonal Harmonics, and the Hilbert Scheme
数学科学:代数和几何的组合方法;
  • 批准号:
    9400934
  • 财政年份:
    1994
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Combinatorial Methods in Algebra: Coxeter Groups, Hecke Algebras, Young Tableaux, and Symmetric Functions
数学科学:代数组合方法:Coxeter 群、Hecke 代数、Young Tableaux 和对称函数
  • 批准号:
    9119355
  • 财政年份:
    1992
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant

相似海外基金

A Polytopal View of Classical Polynomials
经典多项式的多面观
  • 批准号:
    2348676
  • 财政年份:
    2024
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
  • 批准号:
    EP/X032051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Research Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Braids, Surfaces, and Polynomials
辫子、曲面和多项式
  • 批准号:
    2417920
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
  • 批准号:
    23K03126
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
  • 批准号:
    2246624
  • 财政年份:
    2023
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Standard Grant
Practical operational use of higher order polynomials in reducing the linearity errors of nanopositioning stages
高阶多项式在减少纳米定位台线性误差方面的实际操作使用
  • 批准号:
    10039395
  • 财政年份:
    2022
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Collaborative R&D
Characteristic polynomials for symmetric forms
对称形式的特征多项式
  • 批准号:
    EP/W019620/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Research Grant
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
  • 批准号:
    RGPIN-2019-04441
  • 财政年份:
    2022
  • 资助金额:
    $ 12.3万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
  • 批准号:
    575062-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.3万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了