Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
基本信息
- 批准号:0072486
- 负责人:
- 金额:$ 19.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0072486Principal Investigator: Robert M. HardtThis project lies in the area of geometric variational calculus,treating the behavior of singularities and energy concentrationfor various optimal or stationary functions, fields, or geometricstructures subject to geometric or analytic constraints. Specificinvestigations focus on the relation between energy andtopological obstruction in mappings between manifolds,ferromagnetic and liquid crystal materials, improper slicing ofpolynomial varieties, compactness of currents in Carnot groups,and the regularity of relaxed energy minimizers. We willinvestigate the energy concentration along area-minimizing setsfor limits of singularities of p-energy minimizing maps as papproaches a critical power. In various higher dimensionalcases, energy concentration of limits of smooth mappings mayoccur along sets of infinite measure and is related tohomotopically nontrivial mappings of spheres. Singularities inferromagnetic and liquid crystal materials will be also studiedin both stationary and dynamic contexts. The theories of improperintersections of polynomial zero sets from algebraic geometrywill be investigated to understand related behavior in analysisand partial differential equations. A theory of currents inCarnot groups will be studied with an eye on applications tovariational problems.Underlying many physical phenomena is a least-energy principlewhereby certain configurations or fields or geometric shapes aredistinguished by their property of having less energy or areathan competing objects. The external constraints often lead tosingularities, which are special points characterized by rapidchanges of structure occurring in very small spatial regions. Forexample, one observes dislocation faults in solids under stress,domain walls in magnetized materials, vortices in superconductingmaterials, liquid edges and corners in soap films, and point,curve, and surface defects in various liquid crystalmaterials. We deal with new mathematical structures and theoriesnecessary to explain and predict such phenomena. In theseproblems, the theoretical studies of pure mathematics, thenumerical computational studies of applied mathematics, and thephenomenological studies from physics all benefit each other andall have a crucial scientific role.
摘要奖:DMS-0072486主要研究者:Robert M. Hardt这个项目属于几何变分学领域,处理各种最佳或固定函数、场或几何结构在几何或分析约束下的奇点和能量集中行为。具体的研究集中在流形、铁磁和液晶材料之间映射的能量和拓扑阻塞之间的关系、多项式簇的不适当切片、卡诺群中电流的紧性以及松弛能量极小的正则性。我们将研究p-能量极小化映射的奇异性极限在p接近临界幂时沿沿着面积极小化集的能量集中。 在各种高维情形下,光滑映射极限的能量集中可能发生在沿着无穷测度集上,并且与球面上的同伦非平凡映射有关。奇异性、铁磁性和液晶材料也将在静态和动态的背景下进行研究。本课程将探讨代数几何中多项式零集的非正交理论,以了解分析与偏微分方程中的相关行为。卡诺群中的电流理论将着眼于变分问题的应用进行研究。许多物理现象的基础是一个最小能量原理,根据这个原理,某些构型、场或几何形状的特征在于它们具有比竞争物体更少的能量或面积。外部约束往往导致奇点,这是一种特殊的点,其特征是在非常小的空间区域内发生结构的快速变化。例如,人们可以观察到固体在应力下的位错缺陷,磁化材料中的畴壁,超导材料中的涡旋,肥皂膜中的液体边缘和角落,以及各种液晶材料中的点,曲线和表面缺陷。我们处理新的数学结构和理论必要的解释和预测这样的现象。 在这些问题中,纯数学的理论研究、应用数学的数值计算研究和物理学的唯象研究都是相辅相成的,都具有重要的科学作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hardt其他文献
The singular set of an energy minimizing map fromB 4 toS 2
- DOI:
10.1007/bf02567926 - 发表时间:
1990-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Robert Hardt;Fang-Hua Lin - 通讯作者:
Fang-Hua Lin
A systematic mutational framework for studying oxidative phosphorylation-related proteins.
用于研究氧化磷酸化相关蛋白的系统突变框架。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:20.8
- 作者:
Patrick Horten;Kuo Song;J. Garlich;Robert Hardt;Lilia Colina;Susanne E. Horvath;U. Schulte;Bernd Fakler;Martin van der Laan;Thomas Becker;Rosemary A. Stuart;N. Pfanner;Heike Rampelt - 通讯作者:
Heike Rampelt
Sequential weak approximation for maps of finite Hessian energy
- DOI:
10.1007/s00526-015-0881-7 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.000
- 作者:
Robert Hardt;Tristan Rivière - 通讯作者:
Tristan Rivière
Variation of the Green function on Riemann surfaces and Whitney’s holomorphic stratification conjecture
- DOI:
10.1007/bf02698545 - 发表时间:
1988-01-01 - 期刊:
- 影响因子:3.500
- 作者:
Robert Hardt;Dennis Sullivan - 通讯作者:
Dennis Sullivan
Robert Hardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hardt', 18)}}的其他基金
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
1207702 - 财政年份:2012
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0905909 - 财政年份:2009
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0604605 - 财政年份:2006
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Conference: Singularities in Analysis and Geometry
会议:分析和几何中的奇点
- 批准号:
0506207 - 财政年份:2005
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Singularity Behavior in Some Geometric Variational Problems Sciences
一些几何变分问题科学中的奇点行为
- 批准号:
0306294 - 财政年份:2003
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
9704367 - 财政年份:1997
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
- 批准号:
9404336 - 财政年份:1994
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
- 批准号:
9102723 - 财政年份:1991
- 资助金额:
$ 19.29万 - 项目类别:
Continuing grant
Mathematical Sciences: Regularity and Singularity in Constrained Variational Problems
数学科学:约束变分问题中的正则性和奇异性
- 批准号:
8914806 - 财政年份:1989
- 资助金额:
$ 19.29万 - 项目类别:
Continuing grant
Mathematical Sciences: Analysis of Singularities in Minimal Surfaces and Mechanics
数学科学:最小曲面和力学中的奇点分析
- 批准号:
8511357 - 财政年份:1985
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Long-time Behavior of Some Dispersive and Fluid Equations
一些色散和流体方程的长期行为
- 批准号:
1900251 - 财政年份:2019
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
- 批准号:
1600779 - 财政年份:2016
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
- 批准号:
1515161 - 财政年份:2015
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
1207702 - 财政年份:2012
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Examination of the origin of the peculiar anomalous strengthening behavior appeared in some Ni-solid solution alloys
某些镍固溶体合金中出现的特殊异常强化行为的起源研究
- 批准号:
22760540 - 财政年份:2010
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0905909 - 财政年份:2009
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Neuroglycan C, a chondroitin sulfate proteoglycan, overcomes the abnormal behavior induced by administration of some drugs?
Neuroglycan C,一种硫酸软骨素蛋白多糖,可以克服某些药物引起的异常行为?
- 批准号:
21590606 - 财政年份:2009
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some Changes of Supplier Relations and SMEs Existence and Behavior
供应商关系与中小企业生存与行为的一些变化
- 批准号:
19730277 - 财政年份:2007
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0604605 - 财政年份:2006
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Collaborative Research: Theoretical Investigations of Some Empirical Puzzles Regarding Behavior in Relationships with Asymmetric Information
合作研究:关于不对称信息关系中的行为的一些实证难题的理论研究
- 批准号:
0452300 - 财政年份:2005
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant