Singularity Behavior in Some Geometric Variational Problems

一些几何变分问题中的奇异性行为

基本信息

  • 批准号:
    0604605
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

This project lies in the area of geometric variational calculus, treating the behavior of singularities and energy concentration for various optimal or stationary functions, fields, measures, or geometric structures, possibly subject to constraints. The first specific class of projects involves continuing work with T. Riviere, on relations between the p energy of a map between Riemannian manifolds and its homotopy class. In case of nontorsion homotopy, our previous results on the geometric and topological structure of bubbles allows attack on open questions about the weak smooth approximability of Sobolev maps as well as refined questions about bubbling in p stationary maps and heat flows. We also are attacking higher order Sobolev spaces which seem more natural for certain homotopy classes, but for which basic approximation results and constructions have not been previously studied, A second class of projects involves continuing work with Thierry De Pauw on extending notions from geometric measure theory and solutions of Plateau-type problems in the context of chains in a metric space with coefficients in a general group. We consider a variety of mass-type functionals and the notion of a scan which generalizes the finite mass metric-space currents of Ambrosio-Kirchheim and the rectifiable and flat Euclidean-space G-chains of White. In the Euclidean space context we approximate the size functional of Almgren and prove optimal regularity for the minimizers of such approximate functionals. Solutions to many variational problems in both pure and applied mathematics often are forced to have singularities, that is, to involve regions where large oscillations occur. For example a nematic liquid crystal material in a spherical container whose optical axis is forced to point outward on the container necessarily will have singularities inside (observable through cross-polarizers or x-ray diffraction). In this example the optical axis has an energy density, which measures its local rate of change and whose integral tends to have a minimum value among all possible configurations. Our research proposes to understand the relationship between energies in such variational problems and the topological barriers imposed by the physics of these problems. We have derived new notions which allow the treatment and precise description of a wide variety of problems from soap films and their higher dimensional generalizations to optimal transport paths in various complex media. Geometric constraints which occur naturally in many physical problems have led to new mathematical and computational issues. In particular, two that we are studying are the constant cross-sectional area constraint exhibited in plant structure and gradient constraints in the microstructure formation in certain crystalline materials.
这个项目是在几何变分学领域,治疗各种最佳或固定功能,领域,措施,或几何结构,可能受到约束的奇异性和能量集中的行为。第一类特定项目涉及与T的持续合作。里维埃,关于黎曼流形与其同伦类之间映射的p能量的关系。在非挠同伦的情况下,我们以前的结果的几何和拓扑结构的泡沫允许攻击开放的问题弱光滑逼近的Sobolev映射,以及完善的问题起泡在p平稳映射和热流。 我们还攻击高阶索伯列夫空间似乎更自然的某些同伦类,但其中基本的近似结果和建设尚未事先研究,第二类项目涉及继续工作与蒂埃里德堡的概念,从几何测度理论和解决方案的高原型问题的范围内链的度量空间的系数在一般组。我们考虑了各种质量型泛函和扫描的概念,它推广了有限质量度量空间电流的安布罗休-基希海姆和可整流和平坦的欧几里得空间G-链的白色。 在欧氏空间的上下文中,我们近似的大小功能的Almgren和证明最佳的正则性,这种近似泛函的极小。在纯数学和应用数学中,许多变分问题的解经常被迫具有奇点,也就是说,涉及到发生大振荡的区域。 例如,在球形容器中的液晶材料(其光轴被迫在容器上向外指向)必然会在内部具有奇点(通过交叉偏振器或X射线衍射可观察到)。 在该示例中,光轴具有能量密度,该能量密度测量其局部变化率,并且其积分在所有可能的配置中趋于具有最小值。我们的研究旨在了解这些变分问题中的能量与这些问题的物理学所施加的拓扑障碍之间的关系。 我们已经得出了新的概念,允许治疗和精确描述各种各样的问题,从肥皂膜和他们的高维概括,以最佳的传输路径在各种复杂的介质。 几何约束在许多物理问题中自然存在,导致了新的数学和计算问题。特别是,我们正在研究的两个是恒定的横截面积的限制表现在植物结构和梯度限制在某些晶体材料的微观结构的形成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hardt其他文献

The singular set of an energy minimizing map fromB 4 toS 2
  • DOI:
    10.1007/bf02567926
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Robert Hardt;Fang-Hua Lin
  • 通讯作者:
    Fang-Hua Lin
A systematic mutational framework for studying oxidative phosphorylation-related proteins.
用于研究氧化磷酸化相关蛋白的系统突变框架。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    20.8
  • 作者:
    Patrick Horten;Kuo Song;J. Garlich;Robert Hardt;Lilia Colina;Susanne E. Horvath;U. Schulte;Bernd Fakler;Martin van der Laan;Thomas Becker;Rosemary A. Stuart;N. Pfanner;Heike Rampelt
  • 通讯作者:
    Heike Rampelt
Sequential weak approximation for maps of finite Hessian energy
Variation of the Green function on Riemann surfaces and Whitney’s holomorphic stratification conjecture
  • DOI:
    10.1007/bf02698545
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Robert Hardt;Dennis Sullivan
  • 通讯作者:
    Dennis Sullivan

Robert Hardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hardt', 18)}}的其他基金

Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    1207702
  • 财政年份:
    2012
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    0905909
  • 财政年份:
    2009
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Conference: Singularities in Analysis and Geometry
会议:分析和几何中的奇点
  • 批准号:
    0506207
  • 财政年份:
    2005
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Singularity Behavior in Some Geometric Variational Problems Sciences
一些几何变分问题科学中的奇点行为
  • 批准号:
    0306294
  • 财政年份:
    2003
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    0072486
  • 财政年份:
    2000
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    9704367
  • 财政年份:
    1997
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
  • 批准号:
    9404336
  • 财政年份:
    1994
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
  • 批准号:
    9102723
  • 财政年份:
    1991
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Regularity and Singularity in Constrained Variational Problems
数学科学:约束变分问题中的正则性和奇异性
  • 批准号:
    8914806
  • 财政年份:
    1989
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Analysis of Singularities in Minimal Surfaces and Mechanics
数学科学:最小曲面和力学中的奇点分析
  • 批准号:
    8511357
  • 财政年份:
    1985
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Long-time Behavior of Some Dispersive and Fluid Equations
一些色散和流体方程的长期行为
  • 批准号:
    1900251
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
  • 批准号:
    1600779
  • 财政年份:
    2016
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    1207702
  • 财政年份:
    2012
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Examination of the origin of the peculiar anomalous strengthening behavior appeared in some Ni-solid solution alloys
某些镍固溶体合金中出现的特殊异常强化行为的起源研究
  • 批准号:
    22760540
  • 财政年份:
    2010
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
  • 批准号:
    0905909
  • 财政年份:
    2009
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Neuroglycan C, a chondroitin sulfate proteoglycan, overcomes the abnormal behavior induced by administration of some drugs?
Neuroglycan C,一种硫酸软骨素蛋白多糖,可以克服某些药物引起的异常行为?
  • 批准号:
    21590606
  • 财政年份:
    2009
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Some Changes of Supplier Relations and SMEs Existence and Behavior
供应商关系与中小企业生存与行为的一些变化
  • 批准号:
    19730277
  • 财政年份:
    2007
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Theoretical Investigations of Some Empirical Puzzles Regarding Behavior in Relationships with Asymmetric Information
合作研究:关于不对称信息关系中的行为的一些实证难题的理论研究
  • 批准号:
    0452300
  • 财政年份:
    2005
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Collaborative Research -- Theoretical Investigations of Some Empirical Puzzles Regarding Behavior in Relationships with Asymmetric Information
合作研究——关于不对称信息关系中的行为的一些实证难题的理论研究
  • 批准号:
    0452494
  • 财政年份:
    2005
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了