Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
基本信息
- 批准号:1207702
- 负责人:
- 金额:$ 24.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies in the area of geometric calculus of variations, which treats the formation and behavior of singularities for various optimal or stationary functions, fields, measures, or geometric structures, possibly subject to constraints, both deterministic and stochastic. The first specific class of projects involves continuing work with Thierry De Pauw (Paris VI) concerning the study of chains, cochains, charges, and the higher dimensional calculus of variations in general metric spaces with general coefficient groups. We consider a variety of mass-type functionals and the notion of a flat chain which generalizes the finite mass metric-space currents of Ambrosio-Kirchheim and the rectifiable and flat Euclidean-space G-chains of B.White and Fleming, Homology theories defined with such chains give an interplay between the topology and geometry of a metric spaces. For example, preliminary work as shown how Lipschitz path connectedness or the existence of finite mass spanning surfaces may be characterized by a suitable 0 and 1 dimensional flat homology groups. Variational cohomology may be treated by charges, which are cochains dual to normal currents, suitably topologized, and which often admit representation by pairs of continuous forms. Second we are continuing work with T. Riviere (ETH), on relations between various energies of maps between Riemannian manifolds and the homotopy classes of the maps. Following our recent work, we will consider energies given by integrating powers of the norm of the differential, the Hessian, etc. A key general question for critical dimensions is the minimum energy required to produce maps with a given nontrivial topology, in particular, how this minimum grows asymptotically as the topology degenerates. There are interesting concrete problems here for the rational homotopy of 4 manifolds. Third,with Betul Orcan (Rice) we propose to initiate work on geometric structures arising in geometric measure theory from stochastic variational problems with noisy data or noisy dependence on data. The work should be based on quantitative low regularity results and quantitatively described probable higher regularity for most data.Solutions to many variational problems in both pure and applied mathematics often are forced to have singularities, that is, to involve regions where large oscillations occur. For example among the many classes of liquid crystals, the optical axis may be forced to oscillate rapidly near points or along curves or along walls between regions. Our research proposes to understand the relationship between energies in such variational problems and the topological barriers imposed by the physics of the problems. Geometric constraints which occur naturally in many physical problems have led to new mathematical issues, and we need to use the full language of geometric measure theory to have sufficiently general geometric structures and objects to treat these issues. Also in applications, the presence of impurities in materials or of noise in measurements and data acquisition is important to consider. So it would be quite useful to develop mathematical tools to incorporate noise and stochastic considerations with the geometric structures. Two particular problems that we propose studying involve flow problems in image processing and the growth of higher dimensional ramified structures in biology with noisy data.
该项目位于变分几何学领域,它处理各种最佳或固定函数,字段,措施或几何结构的奇点的形成和行为,可能受到确定性和随机性的约束。第一类具体的项目涉及继续工作与蒂埃里德Pauw(巴黎六)有关的研究链,cochains,收费,和高维微积分的变化一般度量空间与一般系数组。我们考虑了各种质量型泛函和平坦链的概念,它推广了Ambrosio-Kirchheim的有限质量度量空间流和B的可求长平坦欧氏空间G-链。白色和Fleming,定义了这样的链的同调理论给出了度量空间的拓扑和几何之间的相互作用。例如,初步工作显示如何Lipschitz路径连通性或存在的有限质量的跨越表面可能是其特征在于一个合适的0和1维平坦的同调群。变分上同调可以用电荷来处理,电荷是正规流的对偶上链,适当地拓扑化,并且经常允许用连续形式对来表示。第二,我们继续与T。里维埃(ETH),关于黎曼流形之间的映射的各种能量与映射的同伦类之间的关系。根据我们最近的工作,我们将考虑能量的积分权力的规范的微分,海森等一个关键的一般性问题的关键尺寸是最低的能源需要产生地图与一个给定的非平凡拓扑结构,特别是,如何这个最低增长渐近拓扑退化。对于4流形的有理同伦,这里有一些有趣的具体问题。第三,与贝图尔Orcan(水稻),我们建议发起工作的几何结构所产生的几何测度理论随机变分问题的噪声数据或噪声依赖于数据。这项工作应该是基于定量低正则性的结果和定量描述可能更高的规律性为大多数data.Solutions的许多变分问题在纯数学和应用数学往往被迫有奇点,也就是说,涉及区域发生大的振荡。例如,在许多种类的液晶中,可以迫使光轴在点附近或沿着曲线或沿着区域之间的壁快速振荡。我们的研究提出了理解能量之间的关系,在这样的变分问题和拓扑障碍所施加的物理问题。在许多物理问题中自然出现的几何约束导致了新的数学问题,我们需要使用完整的几何测度理论语言来处理这些问题。此外,在应用中,材料中杂质的存在或测量和数据采集中的噪声的存在也是重要的考虑因素。因此,它将是非常有用的,以开发数学工具,将噪声和随机考虑的几何结构。我们提出研究的两个特殊问题涉及图像处理中的流问题和生物学中具有噪声数据的高维分枝结构的生长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hardt其他文献
The singular set of an energy minimizing map fromB 4 toS 2
- DOI:
10.1007/bf02567926 - 发表时间:
1990-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Robert Hardt;Fang-Hua Lin - 通讯作者:
Fang-Hua Lin
A systematic mutational framework for studying oxidative phosphorylation-related proteins.
用于研究氧化磷酸化相关蛋白的系统突变框架。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:20.8
- 作者:
Patrick Horten;Kuo Song;J. Garlich;Robert Hardt;Lilia Colina;Susanne E. Horvath;U. Schulte;Bernd Fakler;Martin van der Laan;Thomas Becker;Rosemary A. Stuart;N. Pfanner;Heike Rampelt - 通讯作者:
Heike Rampelt
Sequential weak approximation for maps of finite Hessian energy
- DOI:
10.1007/s00526-015-0881-7 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.000
- 作者:
Robert Hardt;Tristan Rivière - 通讯作者:
Tristan Rivière
Variation of the Green function on Riemann surfaces and Whitney’s holomorphic stratification conjecture
- DOI:
10.1007/bf02698545 - 发表时间:
1988-01-01 - 期刊:
- 影响因子:3.500
- 作者:
Robert Hardt;Dennis Sullivan - 通讯作者:
Dennis Sullivan
Robert Hardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hardt', 18)}}的其他基金
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0905909 - 财政年份:2009
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0604605 - 财政年份:2006
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Conference: Singularities in Analysis and Geometry
会议:分析和几何中的奇点
- 批准号:
0506207 - 财政年份:2005
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Singularity Behavior in Some Geometric Variational Problems Sciences
一些几何变分问题科学中的奇点行为
- 批准号:
0306294 - 财政年份:2003
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0072486 - 财政年份:2000
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
9704367 - 财政年份:1997
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
- 批准号:
9404336 - 财政年份:1994
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singularity Behavior in Some Geometric Variational Problems
数学科学:一些几何变分问题中的奇点行为
- 批准号:
9102723 - 财政年份:1991
- 资助金额:
$ 24.22万 - 项目类别:
Continuing grant
Mathematical Sciences: Regularity and Singularity in Constrained Variational Problems
数学科学:约束变分问题中的正则性和奇异性
- 批准号:
8914806 - 财政年份:1989
- 资助金额:
$ 24.22万 - 项目类别:
Continuing grant
Mathematical Sciences: Analysis of Singularities in Minimal Surfaces and Mechanics
数学科学:最小曲面和力学中的奇点分析
- 批准号:
8511357 - 财政年份:1985
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Long-time Behavior of Some Dispersive and Fluid Equations
一些色散和流体方程的长期行为
- 批准号:
1900251 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
- 批准号:
1600779 - 财政年份:2016
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
- 批准号:
1515161 - 财政年份:2015
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Examination of the origin of the peculiar anomalous strengthening behavior appeared in some Ni-solid solution alloys
某些镍固溶体合金中出现的特殊异常强化行为的起源研究
- 批准号:
22760540 - 财政年份:2010
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0905909 - 财政年份:2009
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Neuroglycan C, a chondroitin sulfate proteoglycan, overcomes the abnormal behavior induced by administration of some drugs?
Neuroglycan C,一种硫酸软骨素蛋白多糖,可以克服某些药物引起的异常行为?
- 批准号:
21590606 - 财政年份:2009
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some Changes of Supplier Relations and SMEs Existence and Behavior
供应商关系与中小企业生存与行为的一些变化
- 批准号:
19730277 - 财政年份:2007
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularity Behavior in Some Geometric Variational Problems
一些几何变分问题中的奇异性行为
- 批准号:
0604605 - 财政年份:2006
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Collaborative Research: Theoretical Investigations of Some Empirical Puzzles Regarding Behavior in Relationships with Asymmetric Information
合作研究:关于不对称信息关系中的行为的一些实证难题的理论研究
- 批准号:
0452300 - 财政年份:2005
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Collaborative Research -- Theoretical Investigations of Some Empirical Puzzles Regarding Behavior in Relationships with Asymmetric Information
合作研究——关于不对称信息关系中的行为的一些实证难题的理论研究
- 批准号:
0452494 - 财政年份:2005
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant