Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
基本信息
- 批准号:0072511
- 负责人:
- 金额:$ 6.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0072511Mathematical Sciences: Asymptotic Expansions, Inverse Problems, and Homogenization of Boundary ConditionsAbstract0072511 MoskowWe will use the technique of asymptotic expansions to solve two types of problems. The first is the accurate detection of the location and shapes of small inhomogeneities from boundary measurements. Asymptotic expansions of the solution with respect to the size of the inhomogeneity will be developed where they are not yet known. A new procedure will be introduced which uses these expansions to find information about the holes. The procedure will be tested for different types of equations and shapes of inhomogeneities. The second problem involves the homogenization of boundary values for equations where the medium has an underlying periodic structure. Asymptotic analysis will aid in finding the limiting or effective equations. This analysis requires examining boundary layer functions which are solutions on a half space with periodic or almost periodic boundary conditions. Many equations that arise from material science and electromagnetics involve some small parameter. This parameter could represent, for example, the diameter of a small imperfection inside an airplane wing. We will analyze mathematically the effects of such imperfections on electric potentials. From this analysis we will develop and test numerically a new method to find the sizes and locations of imperfections. In practice, this method would require inducing electrical currents and measuring the resulting electric potential only on the exterior of the object. We will also analyze the macroscopic behavior of two materials mixed together at the microscopic level. The small parameter in this case represents the size of the microscopic scale. We will use our analysis to model more accurately the propagation of waves through mixed media, for use in oil exploration and materials science.
NSF奖摘要- DMS-0072511数学科学:渐近展开、反问题和边界条件的均匀化 我们将使用渐近展开的技术来解决两类问题。第一个是精确检测的位置和形状的小不均匀性的边界测量。渐近展开的解决方案相对于大小的不均匀性将制定他们还不知道。一个新的程序将被引入,它使用这些扩展来查找有关孔的信息。该程序将测试不同类型的方程和形状的不均匀性。第二个问题涉及方程的边界值的均匀化,其中介质具有潜在的周期性结构。渐近分析将有助于找到极限方程或有效方程。这种分析需要检查边界层功能,这是解决方案的半空间周期性或几乎周期性的边界条件。材料科学和电磁学中的许多方程都涉及到一些小参数。例如,该参数可以表示飞机机翼内的小缺陷的直径。我们将从数学上分析这种缺陷对电势的影响。从这个分析中,我们将开发和测试一种新的方法来找到缺陷的大小和位置。 实际上,这种方法需要感应电流并仅测量物体外部产生的电势。 我们还将在微观水平上分析两种材料混合在一起的宏观行为。在这种情况下,小参数表示微观尺度的大小。 我们将使用我们的分析来更准确地模拟波通过混合介质的传播,用于石油勘探和材料科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shari Moskow其他文献
Nonlinear eigenvalue approximation for compact operators
紧凑算子的非线性特征值近似
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shari Moskow - 通讯作者:
Shari Moskow
A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST 1 SCATTERING STRUCTURES 2
薄高对比度 1 散射结构 2 的预处理方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Josef A. Sifuentes;Shari Moskow - 通讯作者:
Shari Moskow
Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain
频域逆散射问题的正则降阶Lippman-Schwinger-Lanczos方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin Baker;Elena Cherkaev;V. Druskin;Shari Moskow;M. Zaslavsky - 通讯作者:
M. Zaslavsky
A generalized eigenproblem for the Laplacian which arises in lightning
闪电中出现的拉普拉斯算子的广义本征问题
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
B. C. Aslan;W. Hager;Shari Moskow - 通讯作者:
Shari Moskow
Scattering of electromagnetic waves by thin high contrast dielectrics: effects of the object boundary
薄的高对比度电介质对电磁波的散射:物体边界的影响
- DOI:
10.4310/cms.2013.v11.n1.a9 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
D. Ambrose;Shari Moskow - 通讯作者:
Shari Moskow
Shari Moskow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shari Moskow', 18)}}的其他基金
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Novel Image Reconstruction Methods in the Frequency Domain
频域中的新颖图像重建方法
- 批准号:
2008441 - 财政年份:2020
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
OP: Heterogeneous Optical Media: Boundary Effects, Spectral Properties, and Inversion
OP:异构光学介质:边界效应、光谱特性和反演
- 批准号:
1715425 - 财政年份:2017
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
NSF-SIAM Optics and Photonics Workshop
NSF-SIAM 光学与光子学研讨会
- 批准号:
1620860 - 财政年份:2016
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Nonlinear spectral problems in electromagnetics: asymptotics and inversion.
电磁学中的非线性谱问题:渐近和反演。
- 批准号:
1411721 - 财政年份:2014
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
- 批准号:
1108858 - 财政年份:2011
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
- 批准号:
0749396 - 财政年份:2007
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
- 批准号:
0605021 - 财政年份:2006
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
相似海外基金
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Spillover Effects of Medicaid Dental Coverage Expansions on Health Status
医疗补助牙科覆盖范围扩大对健康状况的溢出效应
- 批准号:
10590847 - 财政年份:2023
- 资助金额:
$ 6.25万 - 项目类别:
Empirical study of the political effect on institutional expansions in secondary education: A case of the Philippines
政治对中等教育制度扩张影响的实证研究:以菲律宾为例
- 批准号:
22K13394 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
- 批准号:
22K13722 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
- 批准号:
10440935 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10439166 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10796593 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
- 批准号:
10593996 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
CAREER: Transcriptional Regulation of Primate Gene Expansions
职业:灵长类基因扩展的转录调控
- 批准号:
2145885 - 财政年份:2022
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant