OP: Heterogeneous Optical Media: Boundary Effects, Spectral Properties, and Inversion

OP:异构光学介质:边界效应、光谱特性和反演

基本信息

  • 批准号:
    1715425
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Despite advances in computing speed, the simulation of the propagation of optical waves through complex materials continues to pose significant challenges. Fundamentally, the difficulty arises because variations in the material structure are on the same scale as the optical wavelength. Brute-force approaches thus require very fine discretization of the materials and a very large number of parameters, which is frequently computationally infeasible. The investigator and collaborators aim to develop new mathematical techniques that allow extraction of important properties and features of a system without the need for full simulation. In medical imaging, an initial image could thus be reconstructed in real time. Such an initial image can be useful in itself, or used as input to speed up the run time of high-resolution methods. In design of materials, the energy losses of a material can be estimated to provide qualitative insight into the potential suitability of the material and thus accelerate the construction of the next generation of optical devices. Several graduate and undergraduate students will participate in related research projects.The objective of this project is to solve several open problems related to optics and photonics of heterogeneous materials. The project will involve four main components. The first is to find a complete characterization of boundary effects in periodic optical materials. While boundary corrections in homogenization theory are notoriously difficult to understand, they have a large effect on the resulting fields. A large class of periodic optical materials can be studied by new asymptotic techniques that will allow us to fully characterize the role of the boundary. The second is the derivation of explicit formulae for various spectral properties of periodic scatterers. This includes the transmission eigenvalues, which can be read in the far field and provide information about the medium. The third is to develop a new reduced order model approach to inversion of elliptic operators. The method employs ideas from model reduction theory, and originates from a breakthrough in a previous spectrally matched grid approach that allows application to higher dimensions and general geometries. The last goal is to derive explicit calculations of the resonance values for multiple linear and nonlinear scatterer interactions. The investigator and collaborators use spectral asymptotic perturbation methods to understand the behavior of multiple-scatterer resonant interactions, both for linear materials and for Kerr effects.
尽管计算速度有所提高,但光波在复杂材料中的传播模拟仍然面临着重大挑战。从根本上说,困难的出现是因为材料结构的变化与光学波长在同一尺度上。因此,蛮力方法需要非常精细的材料离散化和大量的参数,这在计算上往往是不可行的。研究者和合作者的目标是开发新的数学技术,以便在不需要完全模拟的情况下提取系统的重要属性和特征。因此,在医学成像中,可以实时重建初始图像。这样的初始图像本身就很有用,或者用作输入以加快高分辨率方法的运行时间。在材料设计中,可以估计材料的能量损失,从而提供对材料潜在适用性的定性洞察,从而加速下一代光学器件的构建。若干研究生和本科生将参与相关研究项目。本课题的目标是解决与非均质材料的光学和光子学相关的几个开放问题。该项目将包括四个主要组成部分。首先是找到周期光学材料中边界效应的完整表征。虽然均匀化理论中的边界修正是出了名的难以理解,但它们对产生的场有很大的影响。一大类周期性光学材料可以通过新的渐近技术来研究,这将使我们能够充分表征边界的作用。第二部分推导了周期散射体各种光谱特性的显式公式。这包括传输特征值,它可以在远场读取并提供有关介质的信息。第三,提出了一种求解椭圆算子反演的降阶模型方法。该方法采用了模型约简理论的思想,并源于先前频谱匹配网格方法的突破,该方法允许应用于更高维度和一般几何形状。最后一个目标是推导出多个线性和非线性散射体相互作用的共振值的显式计算。研究者和合作者使用谱渐近摄动方法来理解线性材料和克尔效应的多散射体共振相互作用的行为。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modified forward and inverse Born series for the Calderon and diffuse-wave problems
Calderon 和漫波问题的修正正向和逆 Born 级数
  • DOI:
    10.1088/1361-6420/abae11
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Abhishek, Anuj;Bonnet, Marc;Moskow, Shari
  • 通讯作者:
    Moskow, Shari
Inverse Born Series
逆生系列
  • DOI:
    10.1515/9783110560855-012
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moskow, Shari and
  • 通讯作者:
    Moskow, Shari and
Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast
具有一般符号对比度的介质小扰动的传输特征值的渐近展开
  • DOI:
    10.3934/ipi.2018041
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Cakoni, Fioralba;Moskow, Shari;Rome, Scott
  • 通讯作者:
    Rome, Scott
Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers
小体积高对比度线性和非线性散射体共振的渐近分析
  • DOI:
    10.1063/1.5031032
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Meklachi, Taoufik;Moskow, Shari;Schotland, John C.
  • 通讯作者:
    Schotland, John C.
Preconditioning Methods for Thin Scattering Structures Based on Asymptotic Results
基于渐近结果的薄散射结构预处理方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shari Moskow其他文献

Nonlinear eigenvalue approximation for compact operators
紧凑算子的非线性特征值近似
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shari Moskow
  • 通讯作者:
    Shari Moskow
A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST 1 SCATTERING STRUCTURES 2
薄高对比度 1 散射结构 2 的预处理方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Josef A. Sifuentes;Shari Moskow
  • 通讯作者:
    Shari Moskow
Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain
频域逆散射问题的正则降阶Lippman-Schwinger-Lanczos方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Elena Cherkaev;V. Druskin;Shari Moskow;M. Zaslavsky
  • 通讯作者:
    M. Zaslavsky
A generalized eigenproblem for the Laplacian which arises in lightning
闪电中出现的拉普拉斯算子的广义本征问题
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. C. Aslan;W. Hager;Shari Moskow
  • 通讯作者:
    Shari Moskow
Scattering of electromagnetic waves by thin high contrast dielectrics: effects of the object boundary
薄的高对比度电介质对电磁波的散射:物体边界的影响

Shari Moskow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shari Moskow', 18)}}的其他基金

Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Novel Image Reconstruction Methods in the Frequency Domain
频域中的新颖图像重建方法
  • 批准号:
    2008441
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
NSF-SIAM Optics and Photonics Workshop
NSF-SIAM 光学与光子学研讨会
  • 批准号:
    1620860
  • 财政年份:
    2016
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Nonlinear spectral problems in electromagnetics: asymptotics and inversion.
电磁学中的非线性谱问题:渐近和反演。
  • 批准号:
    1411721
  • 财政年份:
    2014
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
  • 批准号:
    1108858
  • 财政年份:
    2011
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
  • 批准号:
    0749396
  • 财政年份:
    2007
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
  • 批准号:
    0605021
  • 财政年份:
    2006
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
  • 批准号:
    0072511
  • 财政年份:
    2000
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear Optical Analysis of Molecular Composition and Dynamics within Heterogeneous Assemblies
异质组装体中分子组成和动力学的非线性光学分析
  • 批准号:
    2305178
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
GOALI: ASCENT: Wafer-Scale Computational System (WaSCoS) with heterogeneous integration, power-heat transport, and optical interconnects
目标:ASCENT:具有异构集成、功率热传输和光学互连的晶圆级计算系统 (WaSCoS)
  • 批准号:
    2231097
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Elucidating heterogeneous single chain conformation and dynamics in thin films through optical imaging
RII Track-4:NSF:通过光学成像阐明薄膜中的异质单链构象和动力学
  • 批准号:
    2132144
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Multiplexed and dynamically targeted photoimmunotherapy of heterogeneous, chemoresistant micrometastases guided by online in vivo optical imaging of cell-surface biomarkers
由细胞表面生物标志物在线体内光学成像引导的异质性、耐药性微转移的多重动态靶向光免疫疗法
  • 批准号:
    10617176
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
Multiplexed and dynamically targeted photoimmunotherapy of heterogeneous, chemoresistant micrometastases guided by online in vivo optical imaging of cell-surface biomarkers
由细胞表面生物标志物在线体内光学成像引导的异质性、耐药性微转移的多重动态靶向光免疫疗法
  • 批准号:
    10358581
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
  • 批准号:
    RGPIN-2014-04685
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially-resolved gas concentration, surface species and temperature measurement for heterogeneous catalyzed reactions using an optical accessible channel reactor.
使用光学可访问通道反应器对非均相催化反应进行空间分辨气体浓度、表面物种和温度测量。
  • 批准号:
    RGPIN-2014-04685
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
Optimized Optical Backhaul Design for Fiber-Wireless (FiWi) Enhanced Long Term Evolution-Advanced (LTE-A) Heterogeneous Networks (HetNets)
适用于光纤无线 (FiWi) 增强型长期演进 (LTE-A) 异构网络 (HetNet) 的优化光回程设计
  • 批准号:
    487811-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Postdoctoral Fellowships
Room temperature bonding in air for heterogeneous optical integration
用于异构光学集成的室温空气粘合
  • 批准号:
    18K18863
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Heterogeneous integration of silicon and III-V structures for optical amplification
用于光学放大的硅和 III-V 族结构的异质集成
  • 批准号:
    509658-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了