Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
基本信息
- 批准号:0749396
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
MoskowDMS-0605021 The investigator focuses on material models involvingmultiple coexisting scales, for which ad-hoc computationalapproaches frequently yield unsatisfactory results. Through arigorous mathematical study, she finds effective parameters andapproximations that are not otherwise obvious. She combinescomputational and analytic tools to produce novel techniques thatcan simulate and image composite materials. In particular, thestudy involves structures arising from photonic bandgapmaterials, geophysical inversion, and heterogeneouselectrochemical surfaces. The investigator answers openquestions about the interaction of small scale parameters,solution expansions at singularity surfaces, and the linksbetween continuous and discrete inversion. Often the behaviors of many material substances, whethergeological deposits or designed electromagnetic materials, dependon interactions between components of the materials at differentscales of length. The investigator studies problems of this sort,in which advances have an impact in the applications area as wellas in mathematics. The new photonic simulation techniques aid inthe development of the next generation of nano-scale materialsand optical devices. The tailored computational approaches allowfor more accurate geophysical prospecting. The investigator andcollaborators also analyze models that further the fundamentalunderstanding of certain electrochemical processes. Bothgraduate and undergraduate students benefit by participating inthe project at appropriate levels.
根据莫斯科DMS-0605021标准,研究人员将重点放在涉及多个共存尺度的材料模型上,对于这些模型,特别计算方法经常产生不令人满意的结果。通过有趣的数学研究,她找到了一些其他方面并不明显的有效参数和近似值。她将计算和分析工具结合起来,创造出可以模拟和成像复合材料的新技术。特别是,这项研究涉及来自光子带隙材料、地球物理反转和非均质选择化学表面的结构。研究人员回答了关于小尺度参数的相互作用、奇异面上的解展开以及连续和离散反演之间的联系等公开问题。通常情况下,许多物质的行为,无论是地质沉积物还是设计的电磁材料,都取决于不同长度尺度上材料成分之间的相互作用。研究人员研究这类问题,在这类问题中,进步对应用领域和数学都有影响。新的光子模拟技术有助于下一代纳米材料和光学器件的发展。量身定做的计算方法允许进行更准确的地球物理勘探。研究人员和合作者还分析了模型,这些模型进一步加深了对某些电化学过程的基本理解。研究生和本科生都可以通过在适当的级别参与该项目而受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shari Moskow其他文献
Nonlinear eigenvalue approximation for compact operators
紧凑算子的非线性特征值近似
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shari Moskow - 通讯作者:
Shari Moskow
A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST 1 SCATTERING STRUCTURES 2
薄高对比度 1 散射结构 2 的预处理方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Josef A. Sifuentes;Shari Moskow - 通讯作者:
Shari Moskow
Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain
频域逆散射问题的正则降阶Lippman-Schwinger-Lanczos方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin Baker;Elena Cherkaev;V. Druskin;Shari Moskow;M. Zaslavsky - 通讯作者:
M. Zaslavsky
A generalized eigenproblem for the Laplacian which arises in lightning
闪电中出现的拉普拉斯算子的广义本征问题
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
B. C. Aslan;W. Hager;Shari Moskow - 通讯作者:
Shari Moskow
Scattering of electromagnetic waves by thin high contrast dielectrics: effects of the object boundary
薄的高对比度电介质对电磁波的散射:物体边界的影响
- DOI:
10.4310/cms.2013.v11.n1.a9 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
D. Ambrose;Shari Moskow - 通讯作者:
Shari Moskow
Shari Moskow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shari Moskow', 18)}}的其他基金
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Novel Image Reconstruction Methods in the Frequency Domain
频域中的新颖图像重建方法
- 批准号:
2008441 - 财政年份:2020
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
OP: Heterogeneous Optical Media: Boundary Effects, Spectral Properties, and Inversion
OP:异构光学介质:边界效应、光谱特性和反演
- 批准号:
1715425 - 财政年份:2017
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
NSF-SIAM Optics and Photonics Workshop
NSF-SIAM 光学与光子学研讨会
- 批准号:
1620860 - 财政年份:2016
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Nonlinear spectral problems in electromagnetics: asymptotics and inversion.
电磁学中的非线性谱问题:渐近和反演。
- 批准号:
1411721 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
- 批准号:
1108858 - 财政年份:2011
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
- 批准号:
0605021 - 财政年份:2006
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
- 批准号:
0072511 - 财政年份:2000
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
相似海外基金
Resonant Acoustic Mixing facility for sustainable chemical manufacturing
用于可持续化学制造的共振声学混合设施
- 批准号:
EP/Z53111X/1 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Research Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
- 批准号:
24K17016 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
- 批准号:
24K17329 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Si tunnel transistor with high on-state current assited by resonant state in quantum well
量子阱谐振态辅助的高通态电流硅隧道晶体管
- 批准号:
23H01476 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spectral analysis of micro-resonant PDEs with random coefficients
具有随机系数的微共振偏微分方程的谱分析
- 批准号:
EP/X01021X/1 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Fellowship
An innovation motor for electric aircraft and vehicles - double high power-density by a doubly-fed and a magnetic resonant coupling -
用于电动飞机和车辆的创新电机 - 通过双馈和磁共振耦合实现双倍高功率密度 -
- 批准号:
23K03803 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Beyond thin-film optics: Resonant grating-based optical component technology
SBIR 第一阶段:超越薄膜光学:基于谐振光栅的光学元件技术
- 批准号:
2304394 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Resonant Frequencies: Radio, Race, and Diasporic Listening in Britain, 1945 - 1981
共振频率:1945 年至 1981 年英国的广播、种族和流散聆听
- 批准号:
2883182 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Studentship