Novel Image Reconstruction Methods in the Frequency Domain

频域中的新颖图像重建方法

基本信息

  • 批准号:
    2008441
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The PI will develop faster and more accurate mathematical algorithms for use in biomedical imaging, remote sensing, and novel optical device design. These image construction problems generally involve large and complex systems. The PI will build on recent theoretical breakthroughs to construct reduced systems which allow for more straightforward and efficient mapping of the data to the unknown physical quantities. The novel usage of the reduced models will for the first time allow for the generation of internal physical fields from exterior data only, providing a bridge to a broader range of modalities and experimental settings. Once the reduced model is generated from a small data set, the interior fields can be found for an arbitrarily large data set or for data given in other formats. The knowledge of interior fields greatly simplifies the imaging problems, and for certain applications such as medical ablation, it is the interior fields themselves that are of interest. Several students will be trained in the course of this research, including two full time Phd students. Undergraduate students will work for six months full time on this research problem as their co-op training. The PI continues to have a clear commitment to diversity in mathematics and will make every effort to involve women and/or underrepresented minorities in the co-op experience.The PI will generate new reconstruction methods and develop further theories which are crucial in medical imaging, remote sensing and nondestructive testing. The main goals are to (i) use reduced order models to generate interior solutions from boundary data, (ii) use these boundary data generated interior solutions to solve inverse problems for larger classes of data sets, (iii) derive, analyze and apply a new inverse Born series adapted to nonlinearity, and (iv) use boundary corrections and transmission eigenvalues to image periodic and nearly periodic microstructures. A new way of using reduced order models (ROMs) for inverse problems is introduced, that is, by embedding the ROM back into the continuous problem and generating interior fields from boundary data only. Highly accurate interior fields will be used to apply the ROM to large data sets to yield a completely new, fully nonlinear inversion method with low computational cost. Interior fields are of interest in their own right for applications such as medical ablation, and they provide a bridge between classical inverse problems and multi-physics hybrid methods. A crucial orthogonalization step in the procedure will be justified rigorously. New inverse scattering series will allow us to reconstruct nonlinear scatterers without the use of optimization or forward solvers except for that of the reference medium. We will analyze the series, show convergence estimates, and fully understand the series behavior. For microstructured media, asymptotics of the forward solution will enable us to capture fine scale features. Boundary corrections will be used to image the media along with transmission eigenvalues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将开发更快,更准确的数学算法,用于生物医学成像,遥感和新型光学器件设计。这些图像构建问题通常涉及大型且复杂的系统。PI将建立在最近的理论突破,以构建简化系统,允许更直接,更有效地将数据映射到未知的物理量。 简化模型的新用途将首次允许仅从外部数据生成内部物理场,为更广泛的模态和实验设置提供桥梁。一旦从一个小的数据集生成了简化模型,就可以为任意大的数据集或以其他格式给出的数据找到内部场。内场的知识极大地简化了成像问题,并且对于某些应用,例如医疗消融,感兴趣的是内场本身。 几个学生将在这项研究的过程中进行培训,包括两个全职博士生。本科生将在这个研究问题上全职工作六个月作为他们的合作培训。PI继续明确致力于数学的多样性,并将尽一切努力让妇女和/或代表性不足的少数民族参与合作社的经验。PI将产生新的重建方法,并进一步发展在医学成像,遥感和无损检测中至关重要的理论。主要目标是(i)使用降阶模型从边界数据生成内部解,(ii)使用这些边界数据生成的内部解来解决较大类别的数据集的逆问题,(iii)导出、分析和应用适应于非线性的新的逆Born级数,以及(iv)使用边界校正和透射特征值来成像周期性和近周期性微结构。介绍了一种新的降阶模型(ROM)用于反问题的方法,即通过将ROM嵌入到连续问题中,仅由边界数据生成内部场。高精度的内场将被用于将ROM应用于大型数据集,以产生一种全新的、完全非线性的、计算成本低的反演方法。内场在医学消融等应用中具有重要意义,它们为经典反问题和多物理场混合方法之间提供了桥梁。在这个过程中,一个关键的正交化步骤将得到严格的证明。新的逆散射系列将使我们能够重建非线性散射体,而无需使用优化或前向求解器,除了参考介质。我们将分析该系列,显示收敛估计,并充分了解该系列的行为。对于微结构介质,渐近的前向解决方案将使我们能够捕捉精细尺度的功能。边界校正将用于成像媒体沿着与传输eigenvalues.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability and Reconstruction of a Special Type of Anisotropic Conductivity in Magneto-Acoustic Tomography with Magnetic Induction
磁感应磁声层析成像中特殊类型各向异性电导率的稳定性和重建
  • DOI:
    10.1137/22m1512260
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Donlon, Niall;Gaburro, Romina;Moskow, Shari;Woods, Isaac
  • 通讯作者:
    Woods, Isaac
On extension of the data driven ROM inverse scattering framework to partially nonreciprocal arrays
将数据驱动的 ROM 逆散射框架扩展到部分不可逆阵列
  • DOI:
    10.1088/1361-6420/ac7a59
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Druskin, V;Moskow, S;Zaslavsky, M
  • 通讯作者:
    Zaslavsky, M
A perturbation problem for transmission eigenvalues
传输特征值的扰动问题
  • DOI:
    10.1007/s40687-021-00308-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Ambrose, David M.;Cakoni, Fioralba;Moskow, Shari
  • 通讯作者:
    Moskow, Shari
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shari Moskow其他文献

Nonlinear eigenvalue approximation for compact operators
紧凑算子的非线性特征值近似
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shari Moskow
  • 通讯作者:
    Shari Moskow
A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST 1 SCATTERING STRUCTURES 2
薄高对比度 1 散射结构 2 的预处理方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Josef A. Sifuentes;Shari Moskow
  • 通讯作者:
    Shari Moskow
Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain
频域逆散射问题的正则降阶Lippman-Schwinger-Lanczos方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Baker;Elena Cherkaev;V. Druskin;Shari Moskow;M. Zaslavsky
  • 通讯作者:
    M. Zaslavsky
A generalized eigenproblem for the Laplacian which arises in lightning
闪电中出现的拉普拉斯算子的广义本征问题
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. C. Aslan;W. Hager;Shari Moskow
  • 通讯作者:
    Shari Moskow
Scattering of electromagnetic waves by thin high contrast dielectrics: effects of the object boundary
薄的高对比度电介质对电磁波的散射:物体边界的影响

Shari Moskow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shari Moskow', 18)}}的其他基金

Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
OP: Heterogeneous Optical Media: Boundary Effects, Spectral Properties, and Inversion
OP:异构光学介质:边界效应、光谱特性和反演
  • 批准号:
    1715425
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
NSF-SIAM Optics and Photonics Workshop
NSF-SIAM 光学与光子学研讨会
  • 批准号:
    1620860
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Nonlinear spectral problems in electromagnetics: asymptotics and inversion.
电磁学中的非线性谱问题:渐近和反演。
  • 批准号:
    1411721
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
  • 批准号:
    1108858
  • 财政年份:
    2011
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
  • 批准号:
    0749396
  • 财政年份:
    2007
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
  • 批准号:
    0605021
  • 财政年份:
    2006
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
  • 批准号:
    0072511
  • 财政年份:
    2000
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
  • 批准号:
    2309073
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Reliable AI for Medical Image Reconstruction
用于医学图像重建的可靠人工智能
  • 批准号:
    10687707
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Self-supervised deep-learned physics-informed PET image reconstruction for oncology
用于肿瘤学的自监督深度学习物理学 PET 图像重建
  • 批准号:
    2886561
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Studentship
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
  • 批准号:
    2244882
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
A Comprehensive Study on the Reconstruction of the Historical Image of Koguryo and Balhae
高句丽和渤海历史形象重建综合研究
  • 批准号:
    23H00015
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
  • 批准号:
    10663654
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
  • 批准号:
    RGPIN-2021-03858
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了