A Scanning Tunneling Microscopy Investigation of Spherosiloxane Clusters on Silicon Surfaces

硅表面球硅氧烷簇的扫描隧道显微镜研究

基本信息

项目摘要

This research project focuses on a set of scanning tunneling microscope (STM) experiments employing discrete molecules of hydrogen, silicon, and oxygen (H8Si8O12 and H10Si10O15). The STM-tip/cluster/silicon interaction at the heart of these studies is roughly analogous to a metal-oxide-semiconductor (MOS) capacitor. However, the proposed model has a controllable coupling between the "metal" (STM-tip) and "oxide" (cluster). In these studies, the structure of the insulator can be independently determined to a much greater degree than is possible for the insulator in actual MOS capacitors. The results of these studies will provide a foundation for understanding STM images taken of device interfaces and the basic mechanism of the hydrogen-silicon bond breaking event that leads to device failure. Understanding of structure and failure mechanisms are key for optimizing the next generations of transistors for microelectronic devices. The silicon/silicon oxide interface is a crucial part of the modern transistor. Over the past decade, the thickness of the silicon dioxide insulating layer has shrunk by more than two orders of magnitude and is now approximately10 Angstroms in the smallest research devices. As the thickness of the insulating layer has approached molecular dimensions, the average stoichiometry and physical properties of the silicon oxide undergo important changes that must be understood in order to optimize, or even successfully build, the next generations of silicon-based transistors. Students trained in these areas are likely to compete very well for jobs in various communicatons technology sectors. This research project is jointly supported by the Solid State Chemistry Program of the Division of Materials Research and the Advanced Materials and Processing Program of the Chemistry Division.
该研究项目重点关注一系列使用氢、硅和氧离散分子(H8Si8O12 和 H10Si10O15)的扫描隧道显微镜 (STM) 实验。这些研究核心的 STM 尖端/簇/硅相互作用大致类似于金属氧化物半导体 (MOS) 电容器。然而,所提出的模型在“金属”(STM 尖端)和“氧化物”(簇)之间具有可控耦合。在这些研究中,绝缘体的结构可以在比实际 MOS 电容器中的绝缘体更大的程度上独立确定。这些研究结果将为理解器件界面的 STM 图像以及导致器件失效的氢硅键断裂事件的基本机制提供基础。了解结构和故障机制是优化下一代微电子设备晶体管的关键。硅/氧化硅界面是现代晶体管的关键部分。在过去的十年中,二氧化硅绝缘层的厚度已经缩小了两个数量级以上,现在最小的研究设备中的厚度约为 10 埃。随着绝缘层的厚度接近分子尺寸,氧化硅的平均化学计量和物理性质发生重要变化,为了优化甚至成功构建下一代硅基晶体管,必须了解这些变化。 在这些领域接受过培训的学生很可能在各个通信技术领域的工作中表现出色。 该研究项目得到材料研究部固体化学项目和化学部先进材料与加工项目联合资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Banaszak Holl其他文献

Force Calculations for DNA-PAMAM Dendrimer Interactions from Molecular Dynamics Simulations
  • DOI:
    10.1016/j.bpj.2008.12.1969
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kathleen M. Mills;Brad Orr;Mark Banaszak Holl;Ioan Andricioaei
  • 通讯作者:
    Ioan Andricioaei

Mark Banaszak Holl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Banaszak Holl', 18)}}的其他基金

Carbon-Hydrogen Bond Activation Using Si, Ge, and Sn
使用 Si、Ge 和 Sn 激活碳氢键
  • 批准号:
    0453849
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
US-Turkey Cooperative Research: Synchrotron X-Ray Photoemission Studies of Spherosiloxanes and Alkylsilanes on Gold
美国-土耳其合作研究:金上球形硅氧烷和烷基硅烷的同步加速器 X 射线光电子发射研究
  • 批准号:
    0096583
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
The Structure and Reactivity of Silicon/Silicon Oxide Interfaces
硅/二氧化硅界面的结构和反应性
  • 批准号:
    9727166
  • 财政年份:
    1998
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Structure, Reactivity, and Models of the Silicon/Silicon Dioxide Interface
硅/二氧化硅界面的结构、反应性和模型
  • 批准号:
    9420558
  • 财政年份:
    1995
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Structure, Reactivity, and Models of the Silicon/Silicon Dioxide Interface
硅/二氧化硅界面的结构、反应性和模型
  • 批准号:
    9596208
  • 财政年份:
    1995
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

Design and Implementation of Hyperdimensional Scanning Tunneling Microscopy
超维扫描隧道显微镜的设计与实现
  • 批准号:
    2303936
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
  • 批准号:
    22K18696
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Probing Local Structural and Chemical Properties of Atomically Thin Two-Dimensional Materials by Optical Scanning Tunneling Microscopy
通过光学扫描隧道显微镜探测原子薄二维材料的局部结构和化学性质
  • 批准号:
    2211474
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Detection of ferromagnetic resonance and control of magnetization by spin-resolved scanning tunneling microscopy
自旋分辨扫描隧道显微镜检测铁磁共振和磁化控制
  • 批准号:
    22K14598
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scanning tunneling microscopy studies of the on-surface synthesis of molecular based nanomaterials
分子纳米材料表面合成的扫描隧道显微镜研究
  • 批准号:
    DDG-2021-00011
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Development Grant
Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grants
Role of electrochemical activity and electronic structure studied using a scanning tunneling microscopy approach
使用扫描隧道显微镜方法研究电化学活性和电子结构的作用
  • 批准号:
    21K14595
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scanning tunneling microscopy studies of the on-surface synthesis of molecular based nanomaterials
分子纳米材料表面合成的扫描隧道显微镜研究
  • 批准号:
    DDG-2021-00011
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Development Grant
Ultrafast terahertz scanning tunneling microscopy of superconductors
超导体超快太赫兹扫描隧道显微镜
  • 批准号:
    554033-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    University Undergraduate Student Research Awards
Exploring ultrafast non-equilibrium superconductivity dynamics in Bi-2212 single crystals with terahertz scanning tunneling microscopy
利用太赫兹扫描隧道显微镜探索 Bi-2212 单晶中的超快非平衡超导动力学
  • 批准号:
    554112-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了