Polynomial Inequalities and Applications
多项式不等式及其应用
基本信息
- 批准号:1564541
- 负责人:
- 金额:$ 9.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns mathematical analysis, in particular in approximation theory, orthogonal polynomials, and potential theory. These are parts of mathematics that originated well over a century ago and have provided the foundations and the tools for widespread applications, from magnetic resonance imaging scanners to airplane designs. One main focus of the work is to understand complicated mathematical objects in terms of relatively transparent and computable quantities. The project is a continuation of this classical area, but with a new and fresh look at some of its questions, aimed at developing new methods to solve some well-known open problems. Though it is basic research, the results of the project are anticipated to be useful in other areas of mathematics, physics, and engineering. It is expected that the project will stimulate interest in undergraduates and enhance the research environment for them. There are four main research areas that are considered. The first is the approximative extensions of conformal maps/Green's functions when conventional conformal extensions do not exist. These can be used in lieu of conformal extensions when less smoothness than analyticity is assumed. The second area concerns new types of polynomial inequalities to settle the best constant problem in Bernstein- and Markov-type inequalities on sets consisting of smooth Jordan curves and arcs, thereby closing a chapter in approximation theory that is more than a century old. The third is the study of Christoffel-Darboux kernels associated with general families of orthogonal polynomials with a possible application to universality results in random matrix theory. The fourth research area concerns the clarification and resolution of Widom's conjecture on the norm of Chebyshev polynomials. Various polynomial inequalities connect these fields and are expected to play a decisive role in the solutions of the problems under study.
这个研究项目涉及数学分析,特别是在近似理论,正交多项式,和势理论。这些是数学的一部分,起源于一个多世纪以前,为从磁共振成像扫描仪到飞机设计等广泛应用提供了基础和工具。这项工作的一个主要焦点是用相对透明和可计算的量来理解复杂的数学对象。该项目是这一经典领域的延续,但对其中的一些问题进行了全新的审视,旨在开发新的方法来解决一些众所周知的开放性问题。虽然这是一项基础研究,但该项目的结果有望在数学、物理和工程等其他领域发挥作用。期望这项计划能激发本科生的兴趣,并改善他们的研究环境。有四个主要研究领域被考虑。首先是在常规保角扩展不存在的情况下,保角映射/格林函数的近似扩展。当光滑性低于分析性时,这些可以用来代替保角扩展。第二个领域涉及新的多项式不等式类型,以解决由光滑约旦曲线和圆弧组成的集上的Bernstein和markov型不等式的最佳常数问题,从而结束了一个多世纪以来的近似理论的一章。第三是研究与一般正交多项式族相关的Christoffel-Darboux核,并可能应用于随机矩阵理论的普适性结果。第四个研究领域是关于切比雪夫多项式范数的威多姆猜想的澄清和解决。各种多项式不等式将这些领域联系起来,并有望在研究问题的解决中发挥决定性作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vilmos Totik其他文献
The size of irregular points for a measure
- DOI:
10.1007/s10474-011-0177-0 - 发表时间:
2011-11-29 - 期刊:
- 影响因子:0.600
- 作者:
Vilmos Totik - 通讯作者:
Vilmos Totik
Bernstein-type inequalities
- DOI:
10.1016/j.jat.2012.03.002 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:
- 作者:
Vilmos Totik - 通讯作者:
Vilmos Totik
Weighted polynomial inequalities
- DOI:
10.1007/bf01893420 - 发表时间:
1986-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Paul Nevai;Vilmos Totik - 通讯作者:
Vilmos Totik
Remarks on a functional equation
关于一个函数方程的注记
- DOI:
10.14232/actasm-015-805-1 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Zoltán Daróczy;Vilmos Totik - 通讯作者:
Vilmos Totik
Smooth equilibrium measures and approximation
- DOI:
10.1016/j.aim.2006.11.001 - 发表时间:
2007-07-10 - 期刊:
- 影响因子:
- 作者:
Vilmos Totik;Péter P. Varjú - 通讯作者:
Péter P. Varjú
Vilmos Totik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vilmos Totik', 18)}}的其他基金
Harmonic measures in approximation and orthogonal polynomials
近似和正交多项式中的谐波测量
- 批准号:
1265375 - 财政年份:2013
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Christoffel functions and applications
Christoffel 的功能和应用
- 批准号:
0968530 - 财政年份:2010
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Harmonic measures, polynomial inequalities, orthogonal polynomials and approximation
调和测量、多项式不等式、正交多项式和近似
- 批准号:
0700471 - 财政年份:2007
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Smoothness Properties of Harmonic Measures and the Polynomial Inverse Image Method
谐波测度的平滑特性和多项式逆像法
- 批准号:
0406450 - 财政年份:2004
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
- 批准号:
0097484 - 财政年份:2001
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Potentials, Polynomials and Weighted Polynomial Inequalities
势、多项式和加权多项式不等式
- 批准号:
9801435 - 财政年份:1998
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation Theory and Potentials
数学科学:近似理论和势
- 批准号:
9415657 - 财政年份:1995
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Potential Theoretical Methods in Approximation Theory
数学科学:近似论中潜在的理论方法
- 批准号:
9101380 - 财政年份:1991
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics/Orthogonal Expansions and Potential Theory
数学科学:特殊函数和正交展开及其在非线性动力学和量子力学中的应用/正交展开和势论
- 批准号:
9002794 - 财政年份:1990
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
相似海外基金
Stochastic maximal inequalities for semimartingales and their applications to statistics
半鞅的随机最大不等式及其在统计中的应用
- 批准号:
24K14866 - 财政年份:2024
- 资助金额:
$ 9.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
- 批准号:
2889464 - 财政年份:2023
- 资助金额:
$ 9.75万 - 项目类别:
Studentship
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2022
- 资助金额:
$ 9.75万 - 项目类别:
Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
RGPIN-2021-03584 - 财政年份:2022
- 资助金额:
$ 9.75万 - 项目类别:
Discovery Grants Program - Individual
Mathematics and applications of discrete Sobolev inequalities
离散索博列夫不等式的数学和应用
- 批准号:
22K03360 - 财政年份:2022
- 资助金额:
$ 9.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Discovery Grants Program - Individual
Symbolic-numeric algorithms and applications for systems of differential polynomial equations and inequalities
微分多项式方程组和不等式组的符号数值算法和应用
- 批准号:
RGPIN-2016-06458 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
DGECR-2021-00395 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Discovery Launch Supplement
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
- 批准号:
2200886 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Standard Grant
Weighted isoperimetric inequalities and some applications
加权等周不等式和一些应用
- 批准号:
2525697 - 财政年份:2021
- 资助金额:
$ 9.75万 - 项目类别:
Studentship