Christoffel functions and applications

Christoffel 的功能和应用

基本信息

  • 批准号:
    0968530
  • 负责人:
  • 金额:
    $ 9.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

This is a three year program in classical analysis, in particular in potential theory with applications in approximation theory and orthogonal polynomials. A common unifying theme is the behavior of Christoffel functions and reproducing kernels and their various applications. Another unifying theme is the so called polynomial inverse image method. The applications include fine zero behavior of orthogonal polynomials (with direct translation to eigenvalues of Jacobi matrices), universality results in random matrix theory/statistical physics and various polynomial inequalities. Other questions are related to non-classical orthogonal polynomials (with respect to doubling weights) and approximation by homogeneous polynomials and by their level sets. In several of these problems the polynomial inverse image method - that has already produced sharp and significant results in the past - will play a crucial role, and, in return, the tools to be developed will help us in better understanding this powerful technique. At the heart of the research will be the systematic usage of potential theory and classical harmonic analysis in the relatively distant areas of approximation theory and orthogonal polynomials.The proposed study of various properties of orthogonal polynomials is aimed, by introducing there new tools, to advance a very classical field in mathematics (going back to over 200 years) which has multitudes of connections and applications. The results are relevant to other branches of mathematics, physics and engineering, as well. The research will stimulate interest in students and enhance research environment for them. Graduate and PhD students will have the opportunity to learn the fundamentals and powerful techniques of different disciplines, as well as their interrelations. Some of the results and methods will be integrated into related courses, which in turn may advance the professional development of K-12 science and mathematics teachers. Special emphasis will be made to outreach general public. This will be achieved by publishing educational articles, thereby offering understanding and appreciation for science. These educational materials, just as the findings of the research, will be widely distributed. Lectures will be held at different levels from undergraduate societies to professionals meetings.
这是一个为期三年的经典分析课程,特别是势理论在近似理论和正交多项式中的应用。一个常见的统一主题是Christoffel函数的行为和再现内核及其各种应用程序。另一个统一的主题是所谓的多项式逆像法。应用包括正交多项式的精细零行为(直接转化为雅可比矩阵的特征值),随机矩阵理论/统计物理中的普适性结果和各种多项式不等式。其他问题与非经典正交多项式(关于加倍权值)和齐次多项式及其水平集的近似有关。在一些这样的问题中,多项式逆像法——在过去已经产生了清晰而重要的结果——将发挥关键作用,作为回报,将要开发的工具将帮助我们更好地理解这一强大的技术。研究的核心将是在相对遥远的近似理论和正交多项式领域系统地使用势理论和经典调和分析。提出正交多项式的各种性质的研究,旨在通过引入新的工具,推进一个非常经典的数学领域(可以追溯到200多年前),它有许多联系和应用。这些结果也与数学、物理和工程的其他分支有关。这项研究将激发学生的兴趣,并改善他们的研究环境。研究生和博士生将有机会学习不同学科的基础知识和强大的技术,以及它们之间的相互关系。部分结果和方法将被整合到相关课程中,进而可能促进K-12科学和数学教师的专业发展。将特别强调向公众宣传。这将通过发表教育性文章来实现,从而提供对科学的理解和欣赏。这些教材和研究结果一样,将广泛分发。讲座将在不同层次举行,从本科社团到专业会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vilmos Totik其他文献

The size of irregular points for a measure
  • DOI:
    10.1007/s10474-011-0177-0
  • 发表时间:
    2011-11-29
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Bernstein-type inequalities
  • DOI:
    10.1016/j.jat.2012.03.002
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Weighted polynomial inequalities
  • DOI:
    10.1007/bf01893420
  • 发表时间:
    1986-12-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Paul Nevai;Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Remarks on a functional equation
关于一个函数方程的注记
  • DOI:
    10.14232/actasm-015-805-1
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Zoltán Daróczy;Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Smooth equilibrium measures and approximation
  • DOI:
    10.1016/j.aim.2006.11.001
  • 发表时间:
    2007-07-10
  • 期刊:
  • 影响因子:
  • 作者:
    Vilmos Totik;Péter P. Varjú
  • 通讯作者:
    Péter P. Varjú

Vilmos Totik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vilmos Totik', 18)}}的其他基金

Polynomial Inequalities and Applications
多项式不等式及其应用
  • 批准号:
    1564541
  • 财政年份:
    2016
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Harmonic measures in approximation and orthogonal polynomials
近似和正交多项式中的谐波测量
  • 批准号:
    1265375
  • 财政年份:
    2013
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Harmonic measures, polynomial inequalities, orthogonal polynomials and approximation
调和测量、多项式不等式、正交多项式和近似
  • 批准号:
    0700471
  • 财政年份:
    2007
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Smoothness Properties of Harmonic Measures and the Polynomial Inverse Image Method
谐波测度的平滑特性和多项式逆像法
  • 批准号:
    0406450
  • 财政年份:
    2004
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
  • 批准号:
    0097484
  • 财政年份:
    2001
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Potentials, Polynomials and Weighted Polynomial Inequalities
势、多项式和加权多项式不等式
  • 批准号:
    9801435
  • 财政年份:
    1998
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation Theory and Potentials
数学科学:近似理论和势
  • 批准号:
    9415657
  • 财政年份:
    1995
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Potential Theoretical Methods in Approximation Theory
数学科学:近似论中潜在的理论方法
  • 批准号:
    9101380
  • 财政年份:
    1991
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics/Orthogonal Expansions and Potential Theory
数学科学:特殊函数和正交展开及其在非线性动力学和量子力学中的应用/正交展开和势论
  • 批准号:
    9002794
  • 财政年份:
    1990
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Functions of chromatin remodeler Chd7 in retinal cell development
染色质重塑蛋白 Chd7 在视网膜细胞发育中的功能
  • 批准号:
    10675851
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Animal Models Core
动物模型核心
  • 批准号:
    10628214
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Bone Marrow Functions of Novel Pro-Resolving Mediators
新型亲解决介质的骨髓功能
  • 批准号:
    10852343
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Realizations and practical applications of quantum statistical machine learning theory with navigation functions
具有导航功能的量子统计机器学习理论的实现与实际应用
  • 批准号:
    22H03656
  • 财政年份:
    2022
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-canonical functions of neutrophils
中性粒细胞的非典型功能
  • 批准号:
    10521656
  • 财政年份:
    2022
  • 资助金额:
    $ 9.7万
  • 项目类别:
Zeta functions associated with discrete systems and its applications
离散系统相关的 Zeta 函数及其应用
  • 批准号:
    22K03262
  • 财政年份:
    2022
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Progenitors, Mechanisms of Differentiation, and Functions of Lung M Cells
肺 M 细胞的祖细胞、分化机制和功能
  • 批准号:
    10673927
  • 财政年份:
    2022
  • 资助金额:
    $ 9.7万
  • 项目类别:
Mechanisms and functions of fatty acid oxidation in T cell differentiation
T细胞分化中脂肪酸氧化的机制和功能
  • 批准号:
    10540296
  • 财政年份:
    2022
  • 资助金额:
    $ 9.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了