The backward shift on spaces of analytic functions

解析函数空间的后移

基本信息

  • 批准号:
    0098214
  • 负责人:
  • 金额:
    $ 7.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-09-30
  • 项目状态:
    已结题

项目摘要

In this project, the PI plans to investigate the `continuation' properties of the invariant subspaces of the backward shift operator on various spaces of analytic functions on the unit disk. In 1970, Douglas, Shapiro, and Shields showed that functions belonging to these invariant subspaces of the Hardy space posses special continuation properties to the exterior disk. In more recent investigations, this idea of `continuation' has been shown to be ubiquitous in that it appears to take place, in one form or another, in many other settings belong the Hardy space case. This proposal plans to get at the heart of the nature of these continuations and why they occur in the first place. This project falls under the broad heading of the field of mathematical analysis which, besides its beauty and elegance, makes many connections and has its roots in problems connected with physics and engineering. In fact, the concept of `continuation' properties of analytic functions has been recently studied by the engineer S. Darlington who connected these `continuations' to properties of electrical circuit design.
在这个项目中,PI计划研究单位圆盘上各种解析函数空间上的后移算子的不变子空间的“连续”性质。 在1970年,道格拉斯,夏皮罗和希尔兹表明,职能属于这些不变子空间的哈代空间的特殊延续性质的外部磁盘。在最近的研究中,这种“延续”的观念已被证明是普遍存在的,因为它似乎以这样或那样的形式发生在属于哈代空间情形的许多其他环境中。这个提议计划得到这些延续的本质的核心,以及为什么它们首先发生。这个项目福尔斯属于广泛的标题领域的数学分析,除了其美丽和优雅,使许多连接,并有其根源的问题与物理和工程。事实上,解析函数的“连续”性质的概念最近已经由工程师S.达林顿将这些“延续”与电路设计的属性联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Ross其他文献

A multi-paradigm modelling & simulation approach for system of systems engineering: A case study
多范式建模
SHORT TERM OUTCOMES OF PRE-CUT SPHINCTEROTOMY AND ENDOSCOPIC ULTRASOUND-GUIDED RENDEZVOUS AMONG CANCER PATIENTS ON ANTICOAGULATION - A TERTIARY CARE CENTER EXPERIENCE
  • DOI:
    10.1016/j.gie.2024.04.2623
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Glombicki;Faisal Ali;Jennifer Ma;Kazi Haque;Iyad Al-Bustami;Ingrid Schwartz;Phillip Ge;Emmanuel Coronel;Brian Weston;William Ross;Jeffrey Lee
  • 通讯作者:
    Jeffrey Lee
Architectural Design Considerations for Context-Aware Support in RECON Intelligence Analysis
RECON 情报分析中上下文感知支持的架构设计注意事项
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexis Morris;William Ross;M. Ulieru;Daniel Lafond;R. Proulx;A. Bergeron
  • 通讯作者:
    A. Bergeron
COMBINED EUS AND ERCP FOR THE EVALUATION OF PATIENTS WITH OBSTRUCTIVE JAUNDICE FROM PRESUMED PANCREATICOBILIARY MALIGNANCY: ANALYSIS OF THE CURRENT STUDY AND TIME-PERIOD COMPARISON
  • DOI:
    10.1016/j.gie.2024.04.2609
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Lee;Kazi Haque;Ingrid Schwartz;William Ross;Emmanuel Coronel;Phillip Ge;Brian Weston
  • 通讯作者:
    Brian Weston
Concentration Changes in Cerebellar Purkinje Neurons Spatial Distribution of Synaptically Activated Sodium
小脑浦肯野神经元浓度变化突触激活钠的空间分布
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. N. Ross;R. Foehring;X. F. Zhang;J. Callaway;Brett C. Carter;B. Bean;William Ross;I. Fleidervish;N. Lasser‐Ross
  • 通讯作者:
    N. Lasser‐Ross

William Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Ross', 18)}}的其他基金

Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
  • 批准号:
    2327592
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
VOTCAM
沃特康
  • 批准号:
    0454449
  • 财政年份:
    2004
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
The Shift Operator on Spaces of Analytic and Harmonic Functions
解析函数和调和函数空间上的移位算子
  • 批准号:
    9732649
  • 财政年份:
    1998
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operators on Spaces of Analytic Functions
数学科学:解析函数空间上的运算符
  • 批准号:
    9622914
  • 财政年份:
    1996
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Optical Analysis of Synaptic Integration in Cerebellar Purkinje Cells
小脑浦肯野细胞突触整合的光学分析
  • 批准号:
    9514266
  • 财政年份:
    1996
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant
Optical Analysis of Synaptic Integration in Cerebellar Purkinje Cells
小脑浦肯野细胞突触整合的光学分析
  • 批准号:
    9209784
  • 财政年份:
    1992
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Optical Analysis of Synaptic Integration in Cerebellar Purkinje Cells
小脑浦肯野细胞突触整合的光学分析
  • 批准号:
    8819188
  • 财政年份:
    1989
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

细胞代谢重组过程中蛋白质组热稳定性分析
  • 批准号:
    31970706
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于自适应Q-shift双树复小波分析的碳纤维复合材料缺陷识别
  • 批准号:
    61363050
  • 批准年份:
    2013
  • 资助金额:
    47.0 万元
  • 项目类别:
    地区科学基金项目
基于对象与专家知识的高分辨率SAR图像典型地物提取研究
  • 批准号:
    41071274
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
背景反匹配和微分流形的目标稳健跟踪与归属判别
  • 批准号:
    60805045
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
可视跟踪中的稳健性研究
  • 批准号:
    60642009
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Angular Goos-Hanchen Shift Spectroscopy via Mid-Infrared Photothermal Effect
通过中红外光热效应进行角古斯-汉欣位移光谱
  • 批准号:
    24K17628
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Research Grant
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
  • 批准号:
    2330970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Shift to Net Zero Phase 2 Pathfinder
转向净零第二阶段探路者
  • 批准号:
    10094301
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Demonstrator
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
  • 批准号:
    DP240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Discovery Projects
GW-SHIFT: Great Western Supercluster of Hydrogen Impact for Future Technologies
GW-SHIFT:氢对未来技术影响的大西部超星系团
  • 批准号:
    EP/Y023994/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Research Grant
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Research Grant
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
  • 批准号:
    ES/Y011015/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Research Grant
The Higman-Thompson groups, their generalisations, and automorphisms of shift spaces
希格曼-汤普森群、它们的概括以及移位空间的自同构
  • 批准号:
    EP/X02606X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Fellowship
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
  • 批准号:
    2302568
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了