Geometry of Groups & Functional Analysis

群的几何

基本信息

  • 批准号:
    0100464
  • 负责人:
  • 金额:
    $ 64.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-01 至 2006-11-30
  • 项目状态:
    已结题

项目摘要

AbstractNigel/RoeA deepening understanding of the role played by large-scale geometry in topology has made it clear that large-scale geometric features of groups determine small-scale features of their unitary duals. The effect is easily observed in abelian groups, thanks to Fourier theory and Pontrjagin duality, but the situation is more involved for nonabelian groups, whose unitary representation theory is too complicated to admit a direct descriptive account. However the perspective on dual spaces provided by Alain Connes' noncommutative geometry makes it possible to formulate instances of this large-scale to small-scale phenomenon for nonabelian groups. Moreover the tools of algebraic topology, carried over to the noncommutative realm, make it possible to elevate the phenomenon to a conjectural reciprocity (formulated by Baum and Connes) between the global, homotopy theoretic structures of groups and their reduced duals. The purpose of the research outlined in this proposal is to obtain a more accurate and deeper understanding of the Baum-Connes conjecture in operator K-theory and of the large-to-small scale phenomenon which underlies it. The proposers will investigate issues related to group boundaries, Sobolev theory on the reduced dual of a group, and Hilbert space embeddings of groups. The recent discovery of counterexamples to variants of the Baum-Connes conjecture will be analyzed in depth.Although the tools used to investigate it are rather elaborate, the idea behind large scale-geometry is very simple: ignore the local, small-scale features of a geometric space and concentrate on its large-scale, or long term, structure. By doing so, trends or qualities may become apparent which are obscured by small-scale irregularities. The investigators and others have developed tools to distinguish between different sorts of multi-dimensional, large scale behavior in geometry. Somewhat surprisingly, aside from their intrinsic interest, these tools have found application in ordinary, small-scale geometry and elsewhere. The present proposal focuses on geometric aspects of group theory which are illuminated by large-scale geometry.The proposers are actively involved in training the next generation of mathematical scientists. They lead Penn State's Geometric Functional Analysis group. They run an active, twice-weekly research seminar and between them they have eight doctoral students under their direct supervision (a number of other students attend the seminar regularly). They currently serve as mentors to one VIGRE supported postdoctoral fellow, and will be recruiting a second fellow to be supported by NSF Focussed Research Grant funds this year. The Geometric Functional Analysis group frequently hosts sabbatical visitors as well as visiting graduate students. Besides the seminar, the group runs a continuing program of mini-workshops on research subjects of current interest. The research described in this proposal will be supported by, and carried out as part of, the activities of the Geometric Functional Analysis group.
随着人们对大尺度几何在拓扑学中作用认识的加深,群的大尺度几何特征决定了其么正对偶的小尺度特征。这种效应在阿贝尔群中很容易观察到,这要归功于傅立叶理论和庞特雅金对偶,但对于非阿贝尔群来说,情况更复杂,其么正表示理论太复杂,无法进行直接的描述性解释。然而,Alain Connes的非对易几何所提供的关于对偶空间的观点使得对非交换群的这种大尺度到小尺度现象的实例的表述成为可能。此外,代数拓扑学的工具,延续到非对易领域,使得将这一现象提升到群的整体同伦理论结构与它们的约化对偶之间的猜想互易性(由Baum和Connes提出)成为可能。这项研究的目的是为了更准确和更深入地理解K-算子理论中的Baum-Connes猜想及其背后的大到小尺度现象。提出者将研究与群边界、关于群的约化对偶的Soblev理论以及群的Hilbert空间嵌入有关的问题。最近发现的鲍姆-康尼斯猜想变体的反例将被深入分析。尽管用于研究它的工具相当精细,但大尺度几何背后的思想非常简单:忽略几何空间的局部、小尺度特征,专注于其大尺度或长期结构。通过这样做,趋势或品质可能会变得明显,而这些趋势或品质可能会被小规模的违规行为所掩盖。研究人员和其他人已经开发出工具来区分几何学中不同种类的多维、大规模行为。有些令人惊讶的是,除了它们本身的兴趣之外,这些工具还在普通的、小规模的几何学和其他地方得到了应用。目前的建议集中在群论的几何方面,这些方面被大规模几何所启发。提出者积极参与培养下一代数学科学家。他们领导着宾夕法尼亚州立大学的几何泛函分析小组。他们每周举办两次积极的研究研讨会,他们有8名博士生在他们的直接指导下(其他一些学生定期参加研讨会)。他们目前担任Vigre资助的一名博士后研究员的导师,并将在今年招募第二名研究员,由NSF重点研究资助基金支持。几何泛函分析小组经常接待休假的访客和来访的研究生。除了研讨会外,该小组还继续举办关于当前感兴趣的研究课题的迷你研讨会。本提案中所述的研究将得到几何功能分析小组活动的支持,并作为其活动的一部分进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Higson其他文献

K-theory and the quantization commutes with reduction problem
A proof of the Baum-Connes conjecture for <em>p</em>-adic GL(<em>n</em>)
  • DOI:
    10.1016/s0764-4442(97)84594-6
  • 发表时间:
    1997-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Baum;Nigel Higson;Roger Plymen
  • 通讯作者:
    Roger Plymen
On the Connes–Kasparov isomorphism, I
  • DOI:
    10.1007/s11537-024-2220-2
  • 发表时间:
    2024-02-09
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Pierre Clare;Nigel Higson;Yanli Song;Xiang Tang
  • 通讯作者:
    Xiang Tang

Nigel Higson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel Higson', 18)}}的其他基金

FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952669
  • 财政年份:
    2020
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Group Representations and the Baum-Connes Assembly Map
团体代表和 Baum-Connes 装配图
  • 批准号:
    1101382
  • 财政年份:
    2011
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
Conference Support: Sixth East Coast Operator Algebras Symposium, October 11-12, 2008
会议支持:第六届东海岸算子代数研讨会,2008 年 10 月 11-12 日
  • 批准号:
    0803490
  • 财政年份:
    2008
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Index Theory and the Baum-Connes Conjecture
指数理论和鲍姆-康纳斯猜想
  • 批准号:
    0607879
  • 财政年份:
    2006
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
Immersive Experience for Mathematics Undergraduates: Mathematics Advanced Study Semesters Program at Penn State
数学本科生的沉浸式体验:宾夕法尼亚州立大学数学高级研究学期项目
  • 批准号:
    0436183
  • 财政年份:
    2004
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
  • 批准号:
    0074062
  • 财政年份:
    2000
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
A Vertically Integrated Program for Training in the Mathematical Sciences
数学科学培训的垂直整合计划
  • 批准号:
    9810759
  • 财政年份:
    1999
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
K-Theory, Group C*-Algebras, Large Scale Geometry, and Topology
K 理论、C* 群代数、大尺度几何和拓扑
  • 批准号:
    9800765
  • 财政年份:
    1998
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: K-Theory of C*-Algebras, Group Representations, and Coarse Geometry
数学科学:C* 代数的 K 理论、群表示和粗略几何
  • 批准号:
    9500977
  • 财政年份:
    1995
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Index Theory and K-Theory of Group C*-Algebras
数学科学:C* 族代数的指数理论和 K 理论
  • 批准号:
    9201290
  • 财政年份:
    1992
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant

相似海外基金

Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
  • 批准号:
    ES/Y010639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Research Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
  • 批准号:
    2346615
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 64.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了