Index Theory and the Baum-Connes Conjecture
指数理论和鲍姆-康纳斯猜想
基本信息
- 批准号:0607879
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNigel/RoeA deepening understanding of the role played by large-scale geometry in topology has made it clear that large-scale geometric features of groups determine small-scale features of their unitary duals. The effect is easily observed in abelian groups, thanks to Fourier theory and Pontrjagin duality, but the situation is more involved for nonabelian groups, whose unitary representation theory is too complicated to admit a direct descriptive account. However the perspective on dual spaces provided by Alain Connes noncommutative geometry makes it possible to formulate instances of this large-scale to small-scale phenomenon for nonabelian groups. Moreover the tools of algebraic topology, carried over to the noncommutative realm, make it possible to elevate the phenomenon to a conjectural reciprocity (formulated by Baum and Connes) between the global, homotopy theoretic structures of groups and their reduced duals. The purpose of the research outlined in this proposal is to obtain a more accurate and deeper understanding of the Baum-Connes conjecture in operator K-theory and of the large-to-small scale phenomenon which underlies it. The proposers will investigate issues related to group boundaries, Sobolev theory on the reduced dual of a group, and Hilbert space embeddings of groups. The recent discovery of counterexamples to variants of the Baum-Connes conjecture will be analyzed in depth.Although the tools used to investigate it are rather elaborate, the idea behind large scale-geometry is very simple: ignore the local, small-scale features of a geometric space and concentrate on its large-scale, or long term, structure. By doing so, trends or qualities may become apparent which are obscured by small-scale irregularities. The investigators and others have developed tools to distinguish between different sorts of multi-dimensional, large scale behavior in geometry. Somewhat surprisingly, aside from their intrinsic interest, these tools have found application in ordinary, small-scale geometry and elsewhere. The present proposal focuses on geometric aspects of group theory which are illuminated by large-scale geometry.The proposers are actively involved in training the next generation of mathematical scientists. They lead Penn States' Geometric Functional Analysis group. They run an active, twice-weekly research seminar and between them they have eight doctoral students under their direct supervision (a number of other students attend the seminar regularly). They currently serve as mentors to one VIGRE supported postdoctoral fellow, and will be recruiting a second fellow to be supported by NSF Focussed Research Grant funds this year. The Geometric Functional Analysis group frequently hosts sabbatical visitors as well as visiting graduate students. Besides the seminar, the group runs a continuing program of mini-workshops on research subjects of current interest. The research described in this proposal will be supported by, and carried out as part of, the activities of the Geometric Functional Analysis group.
对大尺度几何在拓扑学中所起作用的深入理解表明,群的大尺度几何特征决定了其酉群的小尺度特征。 由于傅立叶理论和庞特里亚金对偶,这种效应在阿贝尔群中很容易观察到,但对于非阿贝尔群,这种情况更为复杂,其酉表示理论太复杂,无法直接描述。 然而,阿兰·康纳斯(Alain Connes)的非对易几何提供了对偶空间的视角,使得我们有可能为非阿贝尔群制定这种从大尺度到小尺度现象的实例。 此外,代数拓扑的工具,进行到非交换领域,使它有可能提升现象的一个相互作用(由鲍姆和康纳斯制定)之间的全球,同伦理论结构的群体和他们的减少的。 本计划的研究目的是为了更准确、更深入地理解算子K理论中的Baum-Connes猜想及其背后的大尺度到小尺度现象。计划者将研究与群边界、关于群的约化对偶的Sobolev理论和群的Hilbert空间嵌入有关的问题。 最近发现的Baum-Connes猜想变体的反例将被深入分析。尽管用于研究它的工具相当复杂,但大尺度几何背后的思想非常简单:忽略几何空间的局部小尺度特征,专注于其大尺度或长期结构。 这样做,趋势或质量可能变得明显,而这些趋势或质量被小规模的不规则现象所掩盖。 研究人员和其他人已经开发出工具来区分不同种类的多维,大规模的几何行为。 有些令人惊讶的是,除了他们的内在利益,这些工具已经发现在普通的,小规模的几何和其他地方的应用。 目前的建议集中在几何方面的群论,这是照亮了大规模的几何。提案人积极参与培训下一代的数学科学家。 他们领导宾夕法尼亚州立大学的几何功能分析小组。 他们运行一个积极的,每周两次的研究研讨会,他们之间有八个博士生在他们的直接监督下(其他一些学生定期参加研讨会)。 他们目前担任导师,以一个VIGRE支持博士后研究员,并将招募第二个研究员由NSF重点研究补助金基金支持,今年。 几何函数分析组经常接待休假游客以及来访的研究生。 除了研讨会之外,该小组还就当前感兴趣的研究课题举办了一系列小型研讨会。 本提案中描述的研究将得到几何功能分析组活动的支持,并作为其一部分进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Higson其他文献
K-theory and the quantization commutes with reduction problem
- DOI:
10.1007/s11401-014-0856-6 - 发表时间:
2014-08-12 - 期刊:
- 影响因子:0.500
- 作者:
Nigel Higson;Yanli Song - 通讯作者:
Yanli Song
A proof of the Baum-Connes conjecture for <em>p</em>-adic GL(<em>n</em>)
- DOI:
10.1016/s0764-4442(97)84594-6 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:
- 作者:
Paul Baum;Nigel Higson;Roger Plymen - 通讯作者:
Roger Plymen
On the Connes–Kasparov isomorphism, I
- DOI:
10.1007/s11537-024-2220-2 - 发表时间:
2024-02-09 - 期刊:
- 影响因子:1.500
- 作者:
Pierre Clare;Nigel Higson;Yanli Song;Xiang Tang - 通讯作者:
Xiang Tang
Nigel Higson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Higson', 18)}}的其他基金
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952669 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Group Representations and the Baum-Connes Assembly Map
团体代表和 Baum-Connes 装配图
- 批准号:
1101382 - 财政年份:2011
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Conference Support: Sixth East Coast Operator Algebras Symposium, October 11-12, 2008
会议支持:第六届东海岸算子代数研讨会,2008 年 10 月 11-12 日
- 批准号:
0803490 - 财政年份:2008
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Immersive Experience for Mathematics Undergraduates: Mathematics Advanced Study Semesters Program at Penn State
数学本科生的沉浸式体验:宾夕法尼亚州立大学数学高级研究学期项目
- 批准号:
0436183 - 财政年份:2004
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0074062 - 财政年份:2000
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
A Vertically Integrated Program for Training in the Mathematical Sciences
数学科学培训的垂直整合计划
- 批准号:
9810759 - 财政年份:1999
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
K-Theory, Group C*-Algebras, Large Scale Geometry, and Topology
K 理论、C* 群代数、大尺度几何和拓扑
- 批准号:
9800765 - 财政年份:1998
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory of C*-Algebras, Group Representations, and Coarse Geometry
数学科学:C* 代数的 K 理论、群表示和粗略几何
- 批准号:
9500977 - 财政年份:1995
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Mathematical Sciences: Index Theory and K-Theory of Group C*-Algebras
数学科学:C* 族代数的指数理论和 K 理论
- 批准号:
9201290 - 财政年份:1992
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant