Matrix Integrals,Combinatorics and Integral Lattices

矩阵积分、组合学和积分格

基本信息

  • 批准号:
    0100782
  • 负责人:
  • 金额:
    $ 22.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

Abstract for DMS - 0100782(1) What is the distribution of the eigenvalues of arandom matrix, with certain symmetry conditions toguarantee the reality of the spectrum? What happens tothe distribution, when the size of the matrix getslarge? What about universality in the limit?(2) What is the statistics of the length of thelongest increasing sequence in random permutation orrandom words (Ulam's problem). This question appliesto models of interface growth, polymers in randomenvironments, first passage percolation problem, and "dimer" configurations.(3) Integrals over groups and symmetric spaces, (orover their tangent spaces) lead to a variety ofinteresting matrix models. The coefficients of the(perturbative) expansions have striking combinatorialor topological significance and can be computed in arecursive way. This work originates in the works ofFeynman, 't Hooft, Bessis-Itzykson-Zuber and Witten,in the context of string theory.(4) The sample canonical correlation coefficients(maximum likelihood estimates) for the canonicalcorrelation coefficients of two Gaussian populationsare the test statistic for the statisticalindependence of the two populations, as studied byHotelling, James and Constantine.(5) The four problems above and their"time"-perturbations are all solutions to integrableequations or lattices. For large random matrices orpermutations, they are solutions to the Korteweg-deVries equation. In the finite case, they are solutionsto the Toda lattice, and to two new integrablelattices, the Pfaff and Toeplitz lattices.%Besides matrix integrals solutions, these lattices%have interesting rational solutions.It is fair to say that matrix integrals point the wayto new integrable systems, but also to newcombinatorial and probabilistic questions !General description: The problems aboverelate to a number of important questions in physics,engineering and statistics:Problem (1) has its origin in the study of energylevels (excitation spectra) of heavy nuclei in nuclearphysics (Wigner, Dyson). These levels are so intricatethat any explicit description would be intractable.For that reason, Wigner proposed a statistical modelfor these energy levels. Concerning problem (2), it is well known that a large percentage of computer time is devoted to the rearrangement of the data used in the course of computations. How many data, after a complete reshuffling, are statistically still in order? This question of random permutations also applies tostatistical mechanics, the basis of thermodynamics,and to questions of polymers. Some of the matrix models (3) provide toy models for string theory, an important set of ideas at the basis of the fundamental interactions in the physical world.It turns out that certain matrix models, mentionedabove, are used in testing whether two sets ofstatistical data are correlated, as sketched in (4).The Korteweg-de Vries equation, the arch-type``soliton equation", describes the propagation ofwaves in shallow water; a similar non-linear partialdifferential equation governs the propagation ofultra-short pulses in optical fibers, when the wavelength is long compared to the diameter of the fiber.
摘要DMS - 0100782(1)随机矩阵的特征值分布是什么,具有一定的对称性条件以保证频谱的真实性?当矩阵变大时,分布会发生什么变化?极限中的普遍性呢?(2)随机排列或随机字中最长递增序列长度的统计量是多少(乌拉姆问题)?这个问题适用于界面生长模型、随机环境中的聚合物模型、首次通过渗流问题和“二聚体”构型。(3)群和对称空间上的积分(或它们的切空间上的积分)导致了各种有趣的矩阵模型。这些(微扰)展开式的系数具有显著的组合或拓扑意义,并且可以用递归的方法计算.这项工作起源于作品ofFeynman,'t Hooft,贝西-Itzykson-Zuber和维滕,在弦理论的背景下。(4)两个高斯总体典型相关系数的样本典型相关系数(极大似然估计)是两个总体独立性的检验统计量,如Hotelling,James和Constantine所研究的。(5)上述四个问题及其“时间”扰动都是可积方程或格的解。对于大的随机矩阵或置换,它们是Korteweg-deVries方程的解。在有限情形下,它们是户田格和两个新的可积格Pfaff格和Toeplitz格的解.除了矩阵积分解之外,这些格还有有趣的有理解。可以说,矩阵积分不仅为新的可积系统指明了方向,而且也为新的组合问题和概率问题指明了方向。一般说明:问题(1)起源于核物理学中重核能级(激发谱)的研究(Wigner,Dyson)。这些能级是如此复杂,任何明确的描述都是困难的。因此,维格纳提出了一个统计模型,这些能级。关于问题(2),众所周知,计算机时间的很大一部分用于重新安排计算过程中使用的数据。有多少数据,在完全重新洗牌后,在统计上仍然是有序的?这个随机排列的问题也适用于统计力学,热力学的基础,以及聚合物的问题。一些矩阵模型(3)为弦论提供了玩具模型,弦论是物理世界中基本相互作用基础上的一组重要思想。事实证明,上面提到的某些矩阵模型用于检验两组统计数据是否相关,如(4)所示。Korteweg-de弗里斯方程,拱形“孤波方程”,描述了波在浅水中的传播;当波长比光纤直径长时,类似的非线性偏微分方程控制超短脉冲在光纤中的传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Adler其他文献

ADULT CONGENITAL HEART DISEASE EMERGENCY MANAGEMENT SIMULATION CURRICULUM
  • DOI:
    10.1016/s0735-1097(22)02852-2
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Kali Hopkins;Lisa W. Forbess;Ahmad Sami Chaouki;Mark Adler;Michael Carr;Candace Mannarino;Mary McBride
  • 通讯作者:
    Mary McBride
One Hospital's Experience With an Annual Surge of Intoxicated Teens
  • DOI:
    10.1016/j.cpem.2017.05.003
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily C.Z. Roben;I. Allie Hurst;Mark Adler
  • 通讯作者:
    Mark Adler
The Effect of a Rural High School Combination Supplemental Literacy Program on Emerging Readers’ Achievement, Engagement, and Behavior Outcomes
农村高中组合补充识字计划对新兴读者的成就、参与度和行为结果的影响
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Adler
  • 通讯作者:
    Mark Adler
Factors to assess depression in homebound older adults
评估居家老年人抑郁的因素
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer E. Thomas;R. Jacobs;J. Caballero;R. Ownby;Elizabeth M. Lessmann;K. Mallare;Mark Adler
  • 通讯作者:
    Mark Adler
Thymosin- (cid:1) 4 (T (cid:1) 4) Blunts PDGF-Dependent Phosphorylation and Binding of AKT to Actin in Hepatic Stellate Cells
胸腺素- (cid:1) 4 (T (cid:1) 4) 减弱肝星状细胞中 PDGF 依赖性磷酸化以及 AKT 与肌动蛋白的结合
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samreen Vora;B. Dahlen;Mark Adler;D. Kessler;V. F. Jones;S. Kimble;Aaron Calhoun
  • 通讯作者:
    Aaron Calhoun

Mark Adler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Adler', 18)}}的其他基金

Phase transitions in random matrices and infinite dimensional diffusions
随机矩阵中的相变和无限维扩散
  • 批准号:
    0704271
  • 财政年份:
    2007
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant
Integrable Geometry, Random Matrices and Matrix Integrals
可积几何、随机矩阵和矩阵积分
  • 批准号:
    0406287
  • 财政年份:
    2004
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Standard Grant
Strings, Solitons and Random Matrices
弦、孤子和随机矩阵
  • 批准号:
    9802077
  • 财政年份:
    1998
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Analysis
数学科学:几何分析
  • 批准号:
    9502965
  • 财政年份:
    1995
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: String Equations in Mathematical Physics and Integrable Systems
数学科学:数学物理和可积系统中的弦方程
  • 批准号:
    9203246
  • 财政年份:
    1992
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Standard Grant
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
  • 批准号:
    23K03164
  • 财政年份:
    2023
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant
Equidistribution, Period Integrals of Automorphic Forms, and Subconvexity
等分布、自守形式的周期积分和次凸性
  • 批准号:
    2302079
  • 财政年份:
    2023
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Standard Grant
Singular integrals on curves, the Beurling-Ahlfors transform, and commutators
曲线上的奇异积分、Beurling-Ahlfors 变换和换向器
  • 批准号:
    2247234
  • 财政年份:
    2023
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Standard Grant
The mathematical study of the Feynman path integrals and its applications to QED and quantum information theory
费曼路径积分的数学研究及其在 QED 和量子信息论中的应用
  • 批准号:
    22K03384
  • 财政年份:
    2022
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
  • 批准号:
    RGPIN-2020-04351
  • 财政年份:
    2022
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetries, Conserved Integrals, Hamiltonian Flows, and Integrable Systems
对称性、守恒积分、哈密顿流和可积系统
  • 批准号:
    RGPIN-2019-06902
  • 财政年份:
    2022
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
  • 批准号:
    RGPIN-2020-06829
  • 财政年份:
    2022
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 22.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了