Integrable Geometry, Random Matrices and Matrix Integrals
可积几何、随机矩阵和矩阵积分
基本信息
- 批准号:0406287
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0406287Principal Investigator: Mark AdlerThe project aims at investigating various connections betweenrandom matrix theory, various statistical processes,integrablemechanics and the Virasoro algebra Specifically,one project is tostudy non-colliding Brownian motion a la Dyson,on the line and onthe circle,including the Dyson elliptic Brownian motion;theconnection with matrix models in a chain is particularly relevantto finding PDE's for the joint probabilities of the motion.Usingscaling limits arising in the context of random matrices andpermutations,the Dyson motions above tend to novel limitingrandom processes.The motion of the outmost particle tends to theso-called Airy process.Finding stochastic differential equationsfor these processes hinges on intricate statistical questionsabout the universality laws appearing in random matrixtheory.Another project is to find large time asymptotics,likeasymptotic covariances,for the Dyson processes and the limitingprocesses as well.The investigators believe that each of theuniversality laws in random matrix theory connects with anintegrable system and the algebra of Virasoro constraints.Theproblem is to find these sysems and to extract interestinginformation about the distribution functions and theirdifferential equations.Finally,the Dyson circular motion has aninteresting realization in terms of the "Stochastic Loewnerequation",providing a conformal map realization of thismotion.Its Ito stochastic differential equation is related-in amysterious way-to the Virasoro algebra,which also naturally comesup in questions of non-colliding random walks and theFokker-Planck equations.These connections will be investigated.The mathematical physics above has applications in thestatistiical analysis that comes up in many practical problemsinvolving a small number of sources ,each generating lots ofdata,like antennas receiving information,analyzing ecologicaldata from a small number of sources ,each generating lots ofdata,etc.The point being that in many practical problems largerectangular arrays of data come up,which are big in onedirection,but not the other.The statistical processes that comeup also seem to come up in lots of growth models that should berelevant in industrial processes.In addition the universalitylaws that arise in the random matrix theory arise quite naturallyin quantum mechanics,in studying large atoms and so may proveuseful in understanding chemical reactions in physical chemistryand hence in manufacturing drugs through simulation experimentsone day.
摘要奖:DMS-0406287首席研究员:Mark Adler该项目旨在研究随机矩阵理论、各种统计过程、可积力学与Virasoro代数之间的各种联系。具体地说,一个项目是研究非碰撞布朗运动,如Dyson运动、线上运动和圆上运动,包括Dyson椭圆布朗运动;与链中的矩阵模型的联系对于寻找运动的联合概率的偏微分方程组是特别相关的。利用在随机矩阵和排列的背景下产生的标度极限,上面的Dyson运动倾向于新的极限随机过程。最外面的粒子的运动趋向于所谓的Ary过程。寻找这些过程的随机微分方程取决于关于随机矩阵理论中出现的普适性规律的复杂的统计问题。另一个项目是寻找大的时间渐近,如渐近协方差,对于Dyson过程和极限过程,研究人员认为随机矩阵理论中的每个普适性定律都与一个可积系统和Virasoro约束代数有关。问题是找到这些系统,并提取关于分布函数及其微分方程组的有趣信息。最后,Dyson圆周运动有一个有趣的实现,它提供了这种运动的保角映射实现。它与随机微分方程以神秘的方式联系在一起,这自然也会出现在无碰撞随机游动和福克-普朗克方程的问题中。这些联系将被研究。上面的数学物理在统计分析中有应用,这些统计分析在涉及少量源的许多实际问题中出现,每个源产生大量数据,如天线接收信息,分析来自少数源的生态数据,每个源产生大量数据,等等。要点是在许多实际问题中出现大的矩形数据阵列,这些数据在一个方向上是大的,但另一个不是这样。统计过程似乎也出现在许多增长模型中,这些模型应该在工业过程中起作用。此外,随机矩阵理论中出现的普适性定律在研究大原子时非常自然地出现在量子力学中,因此可能有助于理解物理化学中的化学反应,因此有朝一日通过模拟实验来制造药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Adler其他文献
ADULT CONGENITAL HEART DISEASE EMERGENCY MANAGEMENT SIMULATION CURRICULUM
- DOI:
10.1016/s0735-1097(22)02852-2 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Kali Hopkins;Lisa W. Forbess;Ahmad Sami Chaouki;Mark Adler;Michael Carr;Candace Mannarino;Mary McBride - 通讯作者:
Mary McBride
One Hospital's Experience With an Annual Surge of Intoxicated Teens
- DOI:
10.1016/j.cpem.2017.05.003 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:
- 作者:
Emily C.Z. Roben;I. Allie Hurst;Mark Adler - 通讯作者:
Mark Adler
The Effect of a Rural High School Combination Supplemental Literacy Program on Emerging Readers’ Achievement, Engagement, and Behavior Outcomes
农村高中组合补充识字计划对新兴读者的成就、参与度和行为结果的影响
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Mark Adler - 通讯作者:
Mark Adler
Factors to assess depression in homebound older adults
评估居家老年人抑郁的因素
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jennifer E. Thomas;R. Jacobs;J. Caballero;R. Ownby;Elizabeth M. Lessmann;K. Mallare;Mark Adler - 通讯作者:
Mark Adler
Thymosin- (cid:1) 4 (T (cid:1) 4) Blunts PDGF-Dependent Phosphorylation and Binding of AKT to Actin in Hepatic Stellate Cells
胸腺素- (cid:1) 4 (T (cid:1) 4) 减弱肝星状细胞中 PDGF 依赖性磷酸化以及 AKT 与肌动蛋白的结合
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Samreen Vora;B. Dahlen;Mark Adler;D. Kessler;V. F. Jones;S. Kimble;Aaron Calhoun - 通讯作者:
Aaron Calhoun
Mark Adler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Adler', 18)}}的其他基金
Phase transitions in random matrices and infinite dimensional diffusions
随机矩阵中的相变和无限维扩散
- 批准号:
0704271 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Matrix Integrals,Combinatorics and Integral Lattices
矩阵积分、组合学和积分格
- 批准号:
0100782 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Analysis
数学科学:几何分析
- 批准号:
9502965 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: String Equations in Mathematical Physics and Integrable Systems
数学科学:数学物理和可积系统中的弦方程
- 批准号:
9203246 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Random plane geometry
随机平面几何形状
- 批准号:
RGPIN-2022-04786 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2153661 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Large deviations in random planar geometry
随机平面几何形状的大偏差
- 批准号:
572476-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards