Phase transitions in random matrices and infinite dimensional diffusions

随机矩阵中的相变和无限维扩散

基本信息

  • 批准号:
    0704271
  • 负责人:
  • 金额:
    $ 30.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This project in random matrix theory stems from Dyson diffusion for the eigenvalues of a random matrix ,which forces the eigenvalues to evolve according to non-intersecting Brownian motion.Upon letting the size of the random matrices grow arbitrarily large, the eigenvalues turn into a "Markov cloud " of infinite non-intersecting particles,distributed according to a certain equilibrium measure. For each given time,its support will be concentrated on intervals, whose number may vary with time..Therefore, when time evolves, intervals may merge, may disappear and be created, leading to a region R in space- time,whose boundary will be regular,except for various singularities. Near the boundary points of R the non-intersecting Brownian motions will, in the limit, tend to a Markov cloud performing phase transitions when approaching a singularity; these infinte dimensional diffusion are thus critical phenomena and should exhibit universal properties.We wish to derive (nonlinear) PDE's for the transition probabilities and various scaling limits which will yield boundary conditions, appropriatedly understood ,for these Painleve type PDE"s.This will also be a tool to pass from one critical phenomena to another.Along the same vein, another goal of the project is to connect conformal maps, dispersionless 2D-Toda and the Stochastic Lowner equation, through using a stochastically changing domain, via Brownian motion. Random matrix theory has a diverse interface with numerous mathematical and physical disciplines, on the one hand, Fredholm determinants ,integrable mechanics and Painleve equations and on the one hand conformal field theory and statistical mechanics, and in particular. critical phenomena and universality.The basic motivation is to tie these topics together using a Painleve type theory of partial differential equations to explain how various critical phenomena merge into each other and emerge out of each other, perphaps creating a sort of familty-tree for various critical phenomena.The tools of the various fields alluded to will come into play in both describing the phenomena and deriving equations for the probabilistic prediction of how the phenomena evolves.
随机矩阵理论中的这个项目源于随机矩阵特征值的戴森扩散,它迫使特征值根据非相交布朗运动进化。当随机矩阵的大小变得任意大时,特征值就变成了一个由无限不相交的粒子组成的“马尔可夫云”,这些粒子按照一定的平衡度量分布。对于每个给定的时间,它的支持将集中在间隔上,其数量可能随时间而变化。因此,随着时间的发展,区间可以合并,可以消失,也可以产生,从而在时空中形成一个区域R,该区域的边界除了各种奇点之外都是规则的。在R的边界点附近,不相交的布朗运动在极限下趋向于马尔可夫云,在接近奇点时发生相变;因此,这些无限维扩散是关键现象,应该表现出普遍的性质。我们希望推导(非线性)PDE的转移概率和各种缩放极限,这将产生边界条件,适当地理解,为这些painleletype PDE。这也将是一个从一个关键现象传递到另一个关键现象的工具。沿着同样的方向,该项目的另一个目标是通过布朗运动使用随机变化的域,将保角映射、无色散2D-Toda和随机Lowner方程连接起来。随机矩阵理论与许多数学和物理学科有着不同的接口,一方面,Fredholm行列式,可积力学和Painleve方程,一方面,共形场论和统计力学,特别是。批判现象与普遍性。基本动机是使用Painleve型偏微分方程理论将这些主题联系在一起,以解释各种临界现象如何相互融合并相互产生,也许可以为各种临界现象创建一种家谱。所提到的各个领域的工具将在描述现象和推导现象如何演变的概率预测方程中发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Adler其他文献

ADULT CONGENITAL HEART DISEASE EMERGENCY MANAGEMENT SIMULATION CURRICULUM
  • DOI:
    10.1016/s0735-1097(22)02852-2
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Kali Hopkins;Lisa W. Forbess;Ahmad Sami Chaouki;Mark Adler;Michael Carr;Candace Mannarino;Mary McBride
  • 通讯作者:
    Mary McBride
One Hospital's Experience With an Annual Surge of Intoxicated Teens
  • DOI:
    10.1016/j.cpem.2017.05.003
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily C.Z. Roben;I. Allie Hurst;Mark Adler
  • 通讯作者:
    Mark Adler
The Effect of a Rural High School Combination Supplemental Literacy Program on Emerging Readers’ Achievement, Engagement, and Behavior Outcomes
农村高中组合补充识字计划对新兴读者的成就、参与度和行为结果的影响
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Adler
  • 通讯作者:
    Mark Adler
Factors to assess depression in homebound older adults
评估居家老年人抑郁的因素
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer E. Thomas;R. Jacobs;J. Caballero;R. Ownby;Elizabeth M. Lessmann;K. Mallare;Mark Adler
  • 通讯作者:
    Mark Adler
Thymosin- (cid:1) 4 (T (cid:1) 4) Blunts PDGF-Dependent Phosphorylation and Binding of AKT to Actin in Hepatic Stellate Cells
胸腺素- (cid:1) 4 (T (cid:1) 4) 减弱肝星状细胞中 PDGF 依赖性磷酸化以及 AKT 与肌动蛋白的结合
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samreen Vora;B. Dahlen;Mark Adler;D. Kessler;V. F. Jones;S. Kimble;Aaron Calhoun
  • 通讯作者:
    Aaron Calhoun

Mark Adler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Adler', 18)}}的其他基金

Integrable Geometry, Random Matrices and Matrix Integrals
可积几何、随机矩阵和矩阵积分
  • 批准号:
    0406287
  • 财政年份:
    2004
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
Matrix Integrals,Combinatorics and Integral Lattices
矩阵积分、组合学和积分格
  • 批准号:
    0100782
  • 财政年份:
    2001
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Strings, Solitons and Random Matrices
弦、孤子和随机矩阵
  • 批准号:
    9802077
  • 财政年份:
    1998
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Analysis
数学科学:几何分析
  • 批准号:
    9502965
  • 财政年份:
    1995
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: String Equations in Mathematical Physics and Integrable Systems
数学科学:数学物理和可积系统中的弦方程
  • 批准号:
    9203246
  • 财政年份:
    1992
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant

相似海外基金

Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
  • 批准号:
    1954343
  • 财政年份:
    2020
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
Large Scale Asymptotics of Random Spatial Processes: Scaling Exponents, Limit Shapes, and Phase Transitions
随机空间过程的大规模渐近:缩放指数、极限形状和相变
  • 批准号:
    1855688
  • 财政年份:
    2019
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Phase Transitions in Random Interacting Systems
随机相互作用系统中的相变
  • 批准号:
    1811952
  • 财政年份:
    2018
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
CAREER: Phase Transitions in Some Discrete Random Models and Mixing of Markov Chains
职业:一些离散随机模型中的相变和马尔可夫链的混合
  • 批准号:
    1554783
  • 财政年份:
    2016
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Phase transitions in random graphs and random graph processes
随机图和随机图过程中的相变
  • 批准号:
    191445217
  • 财政年份:
    2011
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Research Grants
Dynamic large deviations: nucleation and growth in phase transitions and avalanches in random hamiltonian systems
动态大偏差:随机哈密顿系统中相变和雪崩的成核和生长
  • 批准号:
    104322153
  • 财政年份:
    2009
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Research Units
Phase transitions in two-dimensional classical lattice systems and random matrix theory
二维经典晶格系统中的相变和随机矩阵理论
  • 批准号:
    EP/D505534/1
  • 财政年份:
    2006
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Research Grant
Phase transitions from the view point of stochastic processes
从随机过程的角度来看相变
  • 批准号:
    17540112
  • 财政年份:
    2005
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random field effects on structural and magnetic phase transitions
随机场对结构和磁相变的影响
  • 批准号:
    6203-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Discovery Grants Program - Individual
Random field effects on structural and magnetic phase transitions
随机场对结构和磁相变的影响
  • 批准号:
    6203-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了